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Abstract
The authors study the use of sales agents for network mobilization in a two-sided market platform that connects buyers and
sellers, and they examine how the presence of direct and indirect network effects influences the design of the sales compensation
plan. They employ a principal–agent model in which the firm tasks sales agents to mobilize the side of the platform that it
monetizes (i.e., sellers). Specifically, the presence of network effects alters the agency relationship between the firm and the sales
agent, requiring the platform firm to alter the compensation design, and the nature of the alteration depends on whether the
network effects are direct or indirect and positive or negative. The authors first show how the agent’s compensation plan should
account for different types of network effects. They then establish that when the platform firm compensates the agent solely on
the basis of network mobilization on the side cultivated by the agent (sellers), as intuition would suggest, it will not fully capitalize
on the advantage of positive network effects; that is, profit can be lower under stronger network effects. To overcome this
limitation, the platform should link the agent’s pay to a second metric, specifically, network mobilization on the buyer side, even
though the agent is not assigned to that side. This design induces a positive relation between the strength of network effects and
profit. This research underlines the complexity and richness of network effects and provides managers with new insights regarding
the design of sales agents’ compensation plans for platforms.
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Platform businesses have affected diverse industries such as

transportation (e.g., Uber), advertising technology (e.g., Goo-

gle), media (e.g., Twitter), health care (e.g., American Well),

social networking (e.g., Facebook), retail (e.g., Amazon), bank-

ing (e.g., Credit Karma) and even education (e.g., Coursera).

Platform firms like Apple, Google, Facebook, and Microsoft

now surpass traditional giants like General Motors, the Coca-

Cola Company, and General Electric, not only in terms of

brand value, but also in terms of shareholder value. Two-

sided markets create value differently than other businesses

thanks to a mix of direct network effects from interactions

between same-side participants (e.g., Facebook users enjoying

connecting with their friends) and indirect network effects

involving interactions between participants on opposite sides

of the market (e.g., OpenTable diners get value when they

make reservations at affiliated restaurants, and restaurants

derive value from outreach to potential diners). As a result,

platform adoption decisions depend crucially on network

mobilization, defined as attracting participants on each side

of the marketplace, which requires fundamentally different

management strategies than are needed by businesses that do

not rely on such direct and indirect network effects.

This article focuses on active selling as a key instrument

used by managers to conduct business development and secure

participation on the platform’s network. For instance, Open-

Table employs salespeople for the nontrivial task of persuading

restaurants to adopt the platform. Kyruus, which provides coor-

dination technology to multipoint health systems, hires sales

staff to sign up provider organizations, a challenge amplified

by barriers to information technology (IT) adoption in health

care. Credit Karma hires sales staff to acquire financial provi-

der firms, rounding out its business objective of serving cus-

tomers who seek financial products. American Well, an online

platform connecting physicians with patients, employs sales

agents to reach out to health insurance companies that contract

with these physicians. Twitter, like other advertising-oriented
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platforms, employs advertising sales agents to sell advertising

space to advertisers. Many software firms embracing a plat-

form approach to innovation (e.g., Atlassian, Intuit, Autodesk,

Unity) do so by recruiting external developers (e.g., game

developers or software developers) to extend the capabilities

of their software products.

Proper design of compensation plans for sales agents is thus

vital for platforms. The substantial literature on sales force

compensation provides a starting point for plan design. Given

the unobservability of an agent’s selling efforts, a compensa-

tion plan should link the agent’s compensation to an observed

performance measure (i.e., sales) to achieve a profit-

maximizing balance between incentives and risk sharing. A

rich literature examines this fundamental issue (Basu et al.

1985; Jain 2012; Krishnamoorthy, Misra, and Prasad 2005; Lal

and Srinivasan 1993; Mantrala et al. 2010; Rubel and Prasad

2016; Steenburgh 2008); however, it does not indicate how

incentive compensation plans should account for direct and

indirect network effects. Meanwhile, while the literature on

platforms covers a rich set of issues such as pricing strategies

(Liu and Chintagunta 2009), product design (Bakos and Katsa-

makas 2008), product launch (Lee and O’Connor 2003), seed-

ing strategies (Dou, Niculescu, and Wu 2013), compatibility

and competition (Farrell and Klemperer 2007), competition

across platforms (Rochet and Tirole 2003), competition

between incumbents and entrants (Eisenmann, Parker, and Van

Alstyne 2011; Katz and Shapiro 1992), segmentation (Bhar-

gava and Choudhary 2004), timing of product introduction

(Bhargava, Kim, and Sun 2013), resource allocation (Sridhar

et al. 2011), and business model design (Hagiu 2007; Parker

and Van Alstyne 2005), it does not consider the active role of

salespeople in selling platforms.

This paper investigates how to optimally incentivize sales

agents when network effects drive the value of the product. In

doing so, we explore a series of novel questions for which

initial intuition seems insufficient: (1) Should network effects

alter the design of incentives offered to agents, and how? (2)

Should the agent’s incentives be based on the traditional

metric—sales on the market side that the agent cultivates—

or, because of cross-market effects, should incentives also

account for sales on the side the agent has no responsibility

for? (3) Would positive network effects necessarily increase

the firm’s profit under optimal designs, as predicted by the

platform literature, or could stronger network effects, despite

being positive, lead to lower profits?

To address these managerial questions, we propose a prin-

cipal–agent model of platform sales that takes into account

direct and indirect cross-market network effects and assumes

a utility-maximizing agent, as well as a profit-maximizing plat-

form firm. Our model considers both types of network effects,

on both sides of the platform, and each type can be positive or

negative. The proposed model reveals that the agency relation-

ship arising in the case of platforms differs from the agency

relationship that arises in the case of products without network

effects. The reason is that network effects simultaneously

affect the agent’s selling effectiveness and sales uncertainty.

As a result, traditional risk sharing between the principal and

the agent, a central topic in the sales force compensation liter-

ature (see, e.g., Coughlan and Joseph 2012), is altered. Not only

should network effects matter (i.e., they influence optimal

incentive design), but a proper managerial response requires

a deeper understanding of the type (direct vs. cross-market) and

valence (positive or negative) of network effects. Further, the

agent and the firm respond differently to network effects. In

equilibrium, the optimal commission rate offered to an agent to

sell in a two-sided market is always lower than the optimal

commission rate offered to sell a product in a market without

network effects. Conversely, the agent can work more or less

when selling a two-sided market (compared with selling a

product without network effects), depending on the valence

of network effects.

Furthermore, we produce novel insights regarding the favor-

able impact of network effects. It is generally understood that

positive network effects are good; that is, they increase adop-

tion and value. Thus, making network effects stronger (e.g., by

developing better search, discovery, matching, or fulfillment

algorithms) should increase the firm’s profit. However, we

show that when network mobilization requires an active selling

effort, some network effects can lower profits, despite being

positive. This is because network effects amplify the uncer-

tainty about network mobilization on one side of the market

that occurs as a result of demand shocks on the other side. As a

result, we propose a compensation plan that is informed by

network mobilizations on both sides of the platform to opti-

mally manage the two sources of uncertainty affecting mobili-

zations. Specifically, the proposed plan links the agent’s

compensation not only to the metric that the agent affects

directly—adoption by sellers—but also to another metric that

the agent affects only indirectly: adoption by buyers. The pro-

posed plan then produces the desirable, positive relationship

between stronger network effects and profits.

In the next section, we derive platform demands and

detail the sequence of the game, the agent’s problem, and

the manager’s optimization program. We then present the

equilibrium strategies and profit under traditional compen-

sation plans, which can lead to lower profits. Next, we

present a new plan design that extends the agent’s compen-

sation to an indirect metric, and we show that it restores

optimal risk sharing between the contracting parties when

network effects exist. Finally, we generalize our results by

considering several extensions.

Model

We start with a general model of platform adoption that con-

siders both direct and cross-market (indirect) network effects.

For instance, PayPal displays cross-market network effects

between merchants and individuals, and direct network effects

between individuals. The platform creates the infrastructure

and business rules that enable interactions between the two

sides, which we label b (buyers) and s (sellers). One crucial

insight from the economics of platforms is that often the
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optimal strategy for the platform is to subsidize one side of the

market while monetizing the other (Eisenmann, Parker, and

Van Alstyne 2006; Parker and Van Alstyne 2005). These sides

are labeled the “subsidy” (or “free”) side and the “paying” side.

Commonly, the subsidy side corresponds to buyers, and the

paying side corresponds to sellers, while buyers generate value

for the firm through indirect network effects (Gupta and Mela

2008). Let p denote the price paid by each seller to join the

platform. For expository reasons and to maintain focus on the

influence of network effects, we treat the marginal costs of

serving sellers as zero.

In addition to the infrastructure and business rules that

enable interactions between the two sides, the firm relies on

an agent to mobilize one side of the platform. In practice, this

side is usually the paying side of the platform (the sellers),

whereas network growth on the nonpaying side is primarily

achieved organically by word of mouth and because of the

inherent value (stand-alone benefits, direct network effects,

and cross-network benefits) that customers on this side receive

from participation. An example is Credit Karma, which pro-

vides consumers with a free credit report, earns revenue by

directing them to firms that sell financial products, and

employs an in-house sales team to acquire firms. Other proto-

typical examples to illustrate this idea are the aforementioned

firms, such as OpenTable and LinkedIn, which deploy sales

agents to recruit members on the paying sides (i.e., restaurants

and recruiters, respectively). Similarly, advertising platforms

like Facebook or Twitter task advertising agents to sell adver-

tising space to advertisers, not to increase the number of view-

ers (eyeballs). We subsequently generalize our model to

account for platforms that require active selling on both sides.

Influences on Market Formation

We start with the standard model in the literature for market

formation under network effects. Microfoundations for the

model are presented in Appendix A are based on the assump-

tion that demands on both sides of the platform are determined

by early adopters and followers. Let Qb and Qs represent sales

on the buyer and seller sides, respectively. These sales are

affected by stand-alone benefits (Vb and Vs respectively), the

price charged to sellers by the platform, the direct network

benefits that participants anticipate that they will obtain from

the platform (i.e., gbQa
b and gsQ

a
s , where gb and gs reflect the

intensity of direct network effects, and Qa
s and Qa

b represent

market participants’ anticipation about mobilization), and

finally the cross-network benefits (ZbQa
s and ZsQ

a
b, where Zb

and Zs reflect the intensity of cross-network effects). Other

influences on Qb and Qs are encapsulated in the error terms

eb and es, respectively, which are unknown at the time of con-

tracting, and which we assume to be normally distributed (with

mean 0 and variance s2
b and s2

s , respectively). Specifically, the

sales agent’s effort, w, exerts positive influence on sales with

effectiveness b. Mathematically, these influences are captured

by the following model of sales on both sides covered by the

platform:

Qb ¼ Vb þ gbQa
b þ ZbQa

s þ eb ; and ð1aÞ

Qs ¼ Vs þ gsQ
a
s þ ZsQ

a
b � pþ bwþ es: ð1bÞ

This model is graphically depicted in Figure 1.

Next, following the extant platform research, we assume

that market participants form rational expectations, which

means that participants’ anticipations about network size are

fulfilled in equilibrium. As is standard in the literature (Katz

and Shapiro 1985), the term “expectation” in the expression

“rational expectations” means that Qb ¼ Qa
b ¼ qb and

Qs ¼ Qa
s ¼ qs, which is different from the expectation operator

E in statistics. As a result, we obtain that, at the time of con-

tracting, the equilibrium levels qs and qb on the two sides are

defined as

qb ¼
Vbð1� gsÞ þ ZbðVs þ bw� pÞ
ð1� gbÞð1� gsÞ � ZbZs

þ eb½ð1� gbÞgs þ ZbZs� þ esZb

ð1� gbÞð1� gsÞ � ZbZs

; and

ð2aÞ

qs ¼
VbZs þ ð1� gbÞðVs þ bw� pÞ
ð1� gbÞð1� gsÞ � ZbZs

þ ebZs þ es½ð1� gbÞgs þ ZbZs�
ð1� gbÞð1� gsÞ � ZbZs

;

ð2bÞ

both of which incorporate uncertainty and depend on

product parameters, as well as the agent’s effort level. We

assume that parameters satisfy the regularity condition

ð1� gbÞð1� gsÞ � ZsZb>0, which is necessary to ensure non-

negative sales. The demand equations (Equation 2) comport

with the extant literature on the economics of platforms and

two-sided markets. Moreover, when network effects are set to

zero, that is, gs ¼ gb ¼ Zs ¼ Zb ¼ 0, qs in Equation 2 provides

the classical sales response function used in numerous studies

that investigate sales force compensation and moral hazard

(see, e.g., Hauser, Simester, and Wernerfelt 1994; Holmstrom

and Milgrom 1987; Kalra, Shi, and Srinivasan 2003; Mishra

and Prasad 2005; Syam, Hess, and Yang 2016), which will

allow us to compare and contrast our results with those

obtained for products without network effects. Finally, we do

not impose any restriction on the sign of network effects;

ηb

ηs

γb γsQs ( , w, εs)Qb V( , ε )b,Qb,Qs b
Vs,Qb,Qs

a a a a

Figure 1. Platform sales.
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that is, our model allows network effects to be positive and

negative, thus empowering us to analyze different types

of platforms.

Contract Design Between the Platform and the Agent

Given the demand system (Equation 2), the manager

determines the compensation plan, SðqsÞ, that incentivizes

profit-maximizing effort levels from the agent. Specifically,

following the extant sales force literature, we first consider a

linear compensation plan whereby incentives are based on rev-

enue generated by the agent’s mobilization of sellers (i.e.,

p� qs).
1 Thus, the agent’s compensation is

SðqsÞ ¼ a0 þ a1 � p� qs; ð3Þ

where a0 is the agent’s fixed salary and a1 is the commission

rate. Such a structure, which links commission to revenue or

profit (here, the same, because we assume cost to be zero for

now), is common, for instance, in IT talent companies. These

firms connect IT workers (e.g., software engineers) with client

companies seeking temporary increases in their IT staff, and

they compensate account managers on the basis of the profit-

ability of the businesses they bring in. A similar approach

compensating agents on the basis of profitability prevails at

an online news platform focused on disseminating information

about business schools. Linear contracts have received much

attention in the literature because they are employed in practice

and are robust (see, e.g., Holmstrom and Milgrom 1987), ana-

lytically tractable, and easy to implement. Similarly, we follow

the extant literature and model the agent’s utility as

U½SðqsÞ;w� ¼ 1� e�r½SðqsÞ�CðwÞ�; ð4Þ

where r is the agent’s risk aversion coefficient and CðwÞ is the

cost of effort (with C
0 ðwÞ>0 and C

00 ðwÞ>0). From our discus-

sions with sales leaders at various platform companies, we have

found that the profile of sales agents in such companies does

not differ from the profile of sales agents in other industries.

Thus, we follow the extant analytical (see, e.g., Syam, Hess,

and Yang 2016), empirical (see, e.g., Chung, Steenburgh, and

Sudhir 2014; Misra and Nair 2011), and experimental (see, e.g.,

Chen and Lim 2017) literatures on sales force incentives and

consider the specific convex function CðwÞ ¼ w2=2, which is

also analytically tractable.

The agent’s optimal level of effort is determined by max-

imizing the certainty equivalent of the agent’s utility function,

w� ¼ arg max
w

E½SðqsÞ� �
r
2

Var½SðqsÞ� � CðwÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UCE

: ð5Þ

The optimal effort w� forms the incentive compatibility

(IC) constraint in the firm’s compensation design problem.

Furthermore, the agent’s participation or individual ration-

ality (IR) constraint is such that the agent should receive a

nonnegative net utility in expectation (as we normalize the

value of the agent’s outside option to zero without loss of

generality). The principal then determines the contract

parameters that maximize the expected value of the firm’s

profit,

E½P� ¼ p� E½qs� � E½SðqsÞ�; ð6Þ

subject to the agent’s IC and IR constraints. Thus, the sequence

of the game is as follows:

1. In Stage 1, the principal offers the agent a linear con-

tract, composed of a fixed salary and a commission rate

(a0 and a1, respectively).

2. In Stage 2, the agent accepts or rejects the offer.

3. In Stage 3, the agent exerts effort (w).

4. In Stage 4, market participants mobilize, and payments

are made.

We note that market uncertainty exists when the principal

and the agent agree on the compensation contract, and this

uncertainty resolves over the time period during which the

agent mobilizes the network and participants make deci-

sions. Naturally, therefore, the compensation parameters

are chosen with respect to expectations about outcomes

in the later stages, and assuming that the agent is fully

informed about all the buyer-side response function para-

meters, including strength and signs of direct and indirect

network effects. Finally, the game sequence implies that

the contract parameters influence mobilization through the

agent’s decisions to accept the contract (or not) and to

work hard (or not).

Classical Plan: Linking Incentives to Direct
Sales

This section explores how network effects influence the optimal

configuration of the agent’s compensation contract. We first set

up the benchmark case by describing the optimal linear compen-

sation plan for products without network effects, for which the

sales response function is q ¼ Vþ b� w0 � pþ e, where b is

the agent’s selling effectiveness and e represents normally dis-

tributed demand shocks with zero mean and variance s2. The

agent’s optimal effort strategy is then

w�0 ¼ b� p� a1 : ð7Þ

In return, the platform achieves optimal expected profit by

setting the commission rate to

a�1 ¼
b2

b2 þ rs2
; ð8Þ

1 For now, we treat p as an exogenous fixed price, invariant with qs, but we

relax this restriction later. Another variant is to link the sales commission to the

number of adopters excluding early adopters. Such a contract would be hard to

implement because at the time of contracting, it is uncertain how many early

adopters would remain active users; moreover, this approach does not

qualitatively alter our results.
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where qa�1=qb>0 (see, e.g., Bolton and Dewatripont 2005) and

the equilibrium profit is

E½P�� ¼ ðV� pÞ � p|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Core Contribution of Product

þ p2 � b4

2ðb2 þ rs2Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Contribution of Selling

; ð9Þ

which can be decomposed into two sources: profit that comes

from the stand-alone value of the product (V) and profit that is

generated by active selling. Equations 7 to 9 define the bench-

mark case against which we will compare our results.

Agent’s Effort Strategy and Selling Effectiveness with
Network Effects

For compensation design under network effects, we start by

identifying the agent’s optimal effort strategy and the repon-

siveness of this strategy to network effects. We develop the

following propositions.

P1: The agent’s optimal effort strategy is

w� ¼ ð1� gbÞ
ð1� gbÞð1� gsÞ � ZbZs

� b� p� a1 : ð10Þ

As a result, positive network effects (both direct and cross-

market) enhance the agent’s selling effectiveness and increase

the agent’s optimal effort.

We note that Equation 10, with network effects set to zero,

yields the optimal effort strategy for nonnetwork goods

(w� ¼ b� p� a1, Equation 7). For the richer case of nonzero

network effects, we see that network effects do affect the

agent’s effort and output. The intuition behind P1 is revealed

by rewriting the agent’s optimal effort strategy as

w� ¼ ~b� p� a1; ð11Þ

with ~b ¼ k� b, where

k ¼ ð1� gbÞ
ð1� gbÞð1� gsÞ � ZbZs

is the multiplier effect that network effects exert on the agent’s

selling effectiveness. It is easy to confirm that k>1 when all

network effects are nonnegative, and that both direct and

cross-market network effects enhance the agent’s selling effec-

tiveness. Crucially, positive network effects provide not only a

direct financial reward to the agent, but also an indirect one due

to the feedback loop of sellers on buyers and back to sellers,

thus enhancing the value of a marginal seller for the agent.

Therefore, at any level of commission a1, the agent works

more as any network effect parameter increases; that is,

qw�=qgb>0; qw�=qgs>0; qw�=qZb>0 and qw�=qZs>0:
Conversely, P1 reveals that when some network effects are

negative, they may exert a downward force on the agent’s

effort—for instance, in advertising-related platforms, where

the number of sellers (advertisers) can have a negative impact

on the number of buyers (eyeballs); that is, Zb<0. As a result,

the agent can work less or more in this scenario than when

selling a product without network effects, depending on the

parameters’ values. Specifically, under the regularity condition

for the model, the agent will work more (k>1) when

gbð1� gsÞ>� ZbZs, and less otherwise. The rationale for this

result is that the agent balances two effects: As sellers (adver-

tisers) become more sensitive to the number of buyers (eye-

balls), the agent has an incentive to work more due to the direct

financial reward in the form of the commission rate. At the

same time, the possibly negative cross-market effect of sellers

on buyers decreases the agent’s incentives to work harder to

sell the platform because of the negative feedback loop of sell-

ers on buyers, which could in equilibrium reduce the value of a

marginal seller for the agent and thus make the agent work less.

From these insights, we now explore how the manager should

tune the optimal commission rate as network effects vary,

assuming that b ¼ 1 without loss of generality.

Optimal Commission Rate

The manager chooses the contract parameters to maximize the

platform’s expected profit, balancing the compensation cost

against the reward from the agent’s effort. Formally, the

manager picks a�1 ¼ arg maxa1
E½P�; subject to the agent’s IC

and IR conditions: w ¼ w� and UCEðw�Þ � 0, where

E½P� ¼ ð1� a1Þ � p� E½qs� � a0. From the platform’s per-

spective, and in contrast to the sale of products without network

effects, the agent’s selling effort has a spillover effect on sales

growth due to network effects because of the feedback loop of

sellers on buyers and back to sellers. For instance, when net-

work effects are positive, stronger network effects might

increase the value of a marginal seller for the platform. As a

result, every unit of commission offered to the agent not only

generates extra margin from sellers but has a multiplier effect

on overall profit. This intuition would suggest that as positive

network effects get stronger, the platform should increase the

agent’s commission rate a1 because of the multiplier effects of

network effects on the agent’s selling effectiveness. Our formal

analysis provides greater nuance to this intuition.

P2: The optimal commission rate,

a�1 ¼
ð1� gbÞ2

ð1� gbÞ2ð1þ rs2
s Þ þ rZ2

ss
2
b

; ð12Þ

is independent ofZb and gs and inversely related to gb and Zs.

P2, together with P1, first demonstrates that the agent and the

principal respond differently to network effects. It uncovers in

particular that whereas the agent responds to all network

effects, the platform does not, since qa�1=qgs ¼ qa�1=qZb ¼ 0.

Second, and surprisingly, the firm always decreases the agent’s

commission rate when the intensity of certain network effects

increases, since qa�1=qgb<0; qa�1=qZs<0, even when all net-

work effects are positive. This insight departs from the extant

sales force compensation literature, which recommends

increasing the commission rate as an agent’s effectiveness

increases (see, e.g., Table 26.2 in Coughlan and Joseph 2012).
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We find the opposite. The reason is that, in contrast to the

sale of products without network effects, for which selling

effectiveness and sales uncertainty are independent from each

other, the presence of network effects causes the agent’s effec-

tiveness and sales uncertainty to be correlated, which affects

the optimal balance between risk and incentives that the

principal seeks to achieve when deciding on the optimal com-

mission rate. This impact, however, is different under direct

network effects (gs>0; gb ¼ Zs ¼ Zb ¼ 0) versus indirect net-

work effects (gs ¼ gb ¼ 0;Zs;Zb 6¼ 0). This insight can be

seen more vividly when we interpret the canonical optimal

commission rate a�1 ¼ b2=ðb2 þ rs2Þ as

a�1 ¼ Effectiveness2= ðEffectiveness2 þ r� RiskÞ :

With this canonical form, Table 1 reports the shift in effec-

tiveness and risk components across the three scenarios. Nota-

bly, the table reveals that direct network effects have symmetric

impacts on both the agent’s effectiveness and sales uncertainty,

that is, 1=ð1� gsÞ2, and as a result we find that direct network

effects, on their own, do not affect the optimal commission rate

when indirect network effects are zero. On the contrary, indi-

rect network effects have asymmetric impacts on the effective-

ness and sales uncertainty; in particular, an additional risk is

imported from the buyers’ side into the sellers’ side because of

Zs (i.e., Z2
ss

2
b in the sales variance term). This breakdown

highlights that the increase in uncertainty (as indicated in the

additional term for risk) is not fully compensated by the

increase in effectiveness, causing the optimal commission rate

to be lowered as Zs increases.

To summarize, network effects enter the optimal commis-

sion rate differently depending on the externalities they gener-

ate. Specifically, they enter differently depending on how they

simultaneously affect the agent’s selling effectiveness and

sales uncertainty. These externalities affect the optimal risk

sharing that the manager seeks to achieve through the determi-

nation of the commission rate. When only direct network

effects exist, these externalities occur within the same market

and balance each other, such that only one source of uncer-

tainty affects the performance metric used to compensate the

agent, and this uncertainty is optimally managed by a tradi-

tional unidimensional compensation plan. On the contrary,

when indirect network effects exist, two sources of uncertainty

affect the agent’s performance: demand shocks on the sellers’

side and demand shocks on the buyers’ side, which are

imported because of Zs. In this case, the optimal commission

rate should account for gb and Zs to manage the additional risk

originating from the buyers’ side. From these insights, we now

investigate how the strengths of network effects influence equi-

librium profits.

Impact of Network Effects on Profit

Intuitively, and as discussed in the extant platform literature,

positive network effects make the platform more attractive as

they enhance the value customers derive from it, and therefore,

these effects increase profit. Conversely, negative network

effects should decrease profits. Moreover, as noted, stronger

positive network effects increase the agent’s productivity and

effort level. As a result, the platform’s profit should increase as

network effects increase. Surprisingly, however, we find that

under the classical approach of compensating the agent solely

on the basis of network mobilization on the side of the market

that the agent cultivates, the platform may not always be able to

leverage stronger positive cross-market network effects into

higher profit. To analyze this more precisely, we compute the

platform’s optimal profit by replacing the agent’s optimal

effort strategy and the optimal commission rate in the plat-

form’s expected profit, which we present in the next proposi-

tion. Despite the complex interplay among various network

effect parameters, we can separate the profit into two additive

components as in Equation 9.

P3: The platform’s total expected profit is separable into two parts,

the contribution of the stand-alone benefits Vb and Vs to profit, L1,

such that

L1 ¼
p� ½ðVs � pÞð1� gbÞ þ ZsVb�
½ð1� gbÞð1� gsÞ � ZbZs�

; ð13Þ

and the selling agent’s contribution to the platform’s expected

profit, L2, such that

L2 ¼
½p� ð1� gbÞ2�2

2½ð1� gbÞ2ð1þ rs2
s Þ þ rðZssbÞ2�

� 1

½ð1� gbÞð1� gsÞ � ZbZs�2
;

ð14Þ

with total expected profit E½P�� ¼ L1 þ L2.

Writing Y ¼ fgs; gb;Zs;Zbg as the collection of network

effects, we compute, for each y 2 Y, the sensitivity of the

Table 1. Impact of Network Effects on Selling Effectiveness and Risk in Equilibrium.

No Network Effect Direct Network Effects Only Indirect Network Effects Only

Effectiveness2 1 ½1=ð1� gsÞ�2 ½1=ð1� ZsZbÞ�2

Risk (sales variance) s2 � 1 s2
s � ½1=ð1� gsÞ�2 ðs2

s þ Z2
ss

2
bÞ � ½1=ð1� ZsZbÞ�2

Optimal commission 1=ð1þ rs2Þ 1=ð1þ rs2
s Þ 1=½1þ rðs2

s þ Zss
2
bÞ�

Note: The expressions are arranged to highlight that direct network effects have a symmetric effect on selling effectiveness and risk (notice the common multiplier

½1=ð1� gsÞ�2), whereas indirect network effects have an asymmetric effect.
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platform’s expected profit to network effects by computing

qL1=qy and qL2=qy.2 As a result, we present the following

insights.

Corollary 1 (Negative Impacts on Profit of Positive Network

Effects): When all network effects are positive, that is, gs>0,

gb>0, Zb>0, and Zs>0, both L1 and L2 are positive. Furthermore,

the platform’s expected profit can decrease in gb and Zs, when

Zb=ð1� gsÞ<½ð1� gbÞZsrs
2
b�=½ð1� gbÞ2ð1þ rs2

s Þ þ 2rZ2
ss

2
b�:

In such a case, qE½P��=qgb<0 when qL1=qgb<� qL2

qgb
, and

qE½P��=qZs<0 when qL1=qZs<� qL2=qZs.

In all other scenarios, the platform’s expected profit increases with

stronger network effects.

Corollary 1 provides two important insights. First, it empha-

sizes that after the mechanics of selling are taken into account,

strengthening of network effects gb or Zs can have a detrimental

impact on profit through L2. This result contrasts with the gen-

eral intuition from the literature on platforms that network

effects are always good and that they improve adoption and

profits. Here, the reverse occurs because these two network

effects cause a spillover of buyer-side uncertainty onto sellers’

mobilization. As a result, an increase in each of these parameters

implies a reduction in the optimal level of sales incentive (a1;

see P2), which cascades all the way into profits, lowering the

firm’s total profit, since qL2=qgb<0 and qL2=qZs<0. Thus,

positive network effects do not always increase profit.

The second insight from Corollary 1 is that this negative

impact can be eclipsed when the other two network effect

parameters, gs and Zb, are sufficiently large. That is, high levels

of gs and Zb can convert detrimental parameters (gb or Zs) into

benign ones. Next, we analyze the scenario of platforms whose

revenue model is advertising driven (e.g., Facebook). Buyers’

sensitivity to the number of advertisers (sellers) in such plat-

forms can become negative (i.e., Zb<0), although other net-

work effects remain positive.

Corollary 2 (Advertising-Related Platform): With gs>0, gb>0,

and Zs>0, but Zb<0, the firm’s expected profit always increases

when gs and Zb. Conversely, the firm’s expected profit increases in

gb and Zs only when the following conditions hold:

Vbð1� gsÞ þ ðVs � pÞZb>0, and

qL1=qgb>� qL2=qgb ðfor qE½P�=qgbÞ and

qL1=qZs>� qL2=qZs ðfor qE½P�=qZsÞ:

The additional insight that Corollary 2 provides is that assuming

Zb<0 (e.g., the readership of a newspaper dislikes advertising)

increases the parameter space where some network effects (i.e.,

gb and Zs) have a negative impact on profit, not only through L2

as in Corollary 1, but also through L1. Specifically, when

Vbð1� gsÞ þ ðVs � pÞZb<0, for instance, both L1 and L2

decrease as gb and Zs increase, thus implying a reduction in the

firm’s expected profit. Finally, we discuss the scenario in which all

network effects are positive with the exception of gs, where the

negative value may represent, for instance, congestion effects on

the sellers’ side (i.e., more sellers brings more competition). In this

case, the sensitivity analyses of the firm’s expected profit to network

effects comport with the results presented in the first corollary.

The Value of Indirect Metrics

The misalignment of the risks and rewards when selling goods

with network effects creates a potential for the platform to lose

as network effects strengthen. What could it do to reverse this

negative impact? To motivate a remedy, we note that under

network effects, the agent’s effort has a spillover contribution

toward adoptions on both sides of the platform, even though the

agent is hired to mobilize just one side. While the classical plan

links the agent’s compensation only to sellers, the fact that

qqb=qw 6¼ 0 (see Equation 2) suggests the benefit of incorpor-

ating the indirect metric qb (adoption by buyers) into the agent’s

compensation, via a commission rate a2, such that

Sðqs; qbÞ ¼ a0 þ a1pqs þ a2qb. We show that with this design,

the platform obtains higher profit from stronger network effects.

P4: The platform achieves higher expected profit under the new

plan than under the classical plan. Furthermore, when all network

effects are positive, qE½P��=qy>0, for all y 2 fgs; gb;Zs;Zbg.

How does linking the agent’s plan to the indirect metric of

buyer-side adoption overturn the negative influence of positive

network effects on the platform’s profit? The new plan, with its

additional indirect metric, enables the platform to reduce and diver-

sify the total compensation risk faced by the agent (with a�2<0)

while also providing higher incentives than before for mobilizing

sellers (see Appendix B for the expressions a�1, a�2, andE½P��). As

in the case of teams with observable individual outputs and mul-

tiple sources of uncertainty (Bolton and Dewatripont 2005, p. 315),

the a�2<0 acts as a relative performance evaluation that is used to

disentangle the different sources of risk that affect the agent’s

output and to disentangle how much of the sellers’ mobilization

is due to the agent’s effort versus demand shocks on the buyers’

side. With this, the platform (the principal) capitalizes on stronger

network effects by incentivizing the agent to work harder as net-

work effects get stronger (i.e., w�ja�
2
<0>w�ja2¼0). From a practical

standpoint, where an a�2<0 may not be appealing, we show that

this plan can be approximated and reinterpreted in terms of a better

understood and commonly employed instrument: the use of sales

quotas in the compensation plans of sales agents (Raju and Srini-

vasan 1996). This new contract is

Ssðqs; qbÞ ¼ a0 þ
0 if qs<z;

a1pqs þ a2qb otherwise

�

where z ¼ ½Zs=ð1� gsÞ�E½qb�>0 at the time of contracting.

When mobilization on the sellers’ side is lower than the quota2 See the proof of P3 for the expressions of qLj=qy, where j ¼ f1; 2g.
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�a2=pa1E½qb� ¼ ½Zs=ð1� gsÞ�E½qb�>0, the agent receives a

fixed salary only; the agent receives performance-based incen-

tives when mobilization of sellers exceeds the quota. Like the

previously suggested plan, this contract enables the platform to

account for the two sources of uncertainty that affect network

mobilization on the side of the market that the agent cultivates.

It fosters more effort from the agent as network effects get

stronger and thus preserves the positive influence between

stronger network effects and higher platform profit.

Generalizations

This section explores a few generalizations of the previous

analyses in order to examine the robustness of our main results.

The first question we explore is whether our insights, derived

under exogenous pricing (to the seller side) hold when the

platform jointly determines both the agent’s compensation and

the price charged to sellers. We do so under the multiple-metric

plan proposed in the previous section. Second, we consider the

case where the platform employs two different sales agents,

one on each side of the platform, to recruit network participants

on both sides of the market.

Endogenous Price

We now examine optimal compensation design while jointly

optimizing the seller-side price p. The rules for market forma-

tion and agent’s behavior remain unchanged. The optimal con-

tract parameters and price, taking into account the agent’s IC

and IR conditions, are reported in the following proposition.

P5: Assuming gs<1=2, the optimal pricing strategy and commis-

sion rates are

p� ¼ Vs þ Vb �
Zs

1� gb

� �
� P1; ð15Þ

and

ða�1;a�2Þ ¼
ð1� gbÞð1� gsÞ

ð1� gbÞð1� gsÞ � ZsZb

� 1

1þ rs2
s

;� a�1 � p� � Zs

1� gs

� �
;

ð16Þ

respectively, where P1 is reported in Appendix B.

P5, provided that gs<1=2 to ensure optimality of the first-

order condition, provides the insight that the platform’s pricing

decision and compensation plan decision can be made indepen-

dently, with price merely serving as a parameter in compensa-

tion plan design. The commission rate linked to recruitment of

sellers is independent of price. Meanwhile, the commission rate

offered to the agent based on buyers’ mobilization is qualita-

tively the same whether or not the firm strategically chooses the

price, although of course its level would vary with the price that

the manager chooses. While this analysis confirms the robust-

ness of earlier insights, it also allows us to learn (from numer-

ical simulations reported in the Web Appendix) that the firm

increases the price paid by sellers as it expects a stronger

mobilization on the buyers’ side (due, for instance, to stronger

network effects).3

Active Selling for Mobilizing Buyers

Next, we examine compensation plan designs when network

participants on each side of the market are recruited, respec-

tively, by sales agents assigned to that side. For instance, a

platform like Kyruus might need active selling to recruit both

health care provider facilities, on one side, and patient-sourcing

sites, such as WedMD, on the other. Denoting the effort exerted

on the sellers’ side by ws and the effort exerted on the buyers’

side by wb, we can model the network size on either side as

Qb ¼ Vb þ gbQa
b þ ZbQa

s þ wb þ eb; and ð17aÞ

Qs ¼ Vs þ gsQ
a
s þ ZsQ

a
b � pþ ws þ es : ð17bÞ

These equations imply, at the time of contracting, equilibrium

levels qs and qb, such that

qb ¼
ðVb þ wbÞð1� gsÞ þ ½ðVs � pÞ þ ws�Zb

ð1� gbÞð1� gsÞ � ZbZs

þ eb½ð1� gbÞgs þ ZbZs� þ esZb

ð1� gbÞð1� gsÞ � ZbZs

; and

ð18aÞ

qs ¼
ðVb þ wbÞZs þ ð1� gbÞððVs � pÞ þ wsÞ

ð1� gbÞð1� gsÞ � ZbZs

þ ebZs þ esðð1� gbÞgs þ ZbZsÞ
ð1� gbÞð1� gsÞ � ZbZs

:

ð18bÞ

From our previous results, we consider plans that link agent

compensation to metrics on both sides of the market. Thus, the

contract offered to the agent tasked to mobilize the sellers’ side

is Ssðqs; qbÞ ¼ a0 þ a1pqs þ a2qb, and the contract offered to

the agent tasked to mobilize the buyers’ side is Sbðqs; qbÞ ¼
b0 þ b1pqs þ b2qb: Both agents determine their respective lev-

els of efforts so as to maximize their expected utilities; that

is, w�i ¼ arg max
wi

E½Siðqb; qsÞ� � ðr=2ÞVar½Siðqs; qbÞ� � w2
i =2;

for i ¼ fb; sg. As a result, the optimal effort strategies are

ðw�s ; w�bÞ ¼
pð1� gbÞa1 þ Zba2

ð1� gbÞð1� gsÞ � ZbZs

;
pb1Zs þ ð1� gsÞb2

ð1� gbÞð1� gsÞ � ZbZs

� �
:

ð19Þ

The manager then chooses the commission rates

ða1; a2; b1; b2Þ to maximize the firm’s expected profit; that is,

E½P� ¼ ð1� a1 � b1ÞpE½qs� � ða2 þ b2ÞE½qb� � ða0 þ b0Þ;
ð20Þ

subject to both agents’ IC and IR conditions, which yields the

following proposition.

3 We thank an anonymous reviewer for encouraging us to explore this

relationship.
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P6: The optimal commission rates for the agent tasked to mobilize

sellers are

ða�1; a�2Þ ¼
ð1� gbÞð1� gsÞ

ð1� gbÞð1� gsÞ � ZbZs

� 1

1þ rs2
s

;�a�1 �
p

1� gs

� �
;

ð21Þ

whereas the optimal commission rates for the agent tasked to mobi-

lize buyers are

ðb�1; b�2Þ ¼ �a�1
ZbZs

ð1� ZbÞð1� ZsÞ
; a�1

pZs

1� gs

� �
: ð22Þ

P6 implies that when all network effects are positive, the

commissions paid to the two agents based on network mobili-

zations of the sides they are responsible to cultivate are posi-

tive; that is, a�1>0 for the agent tasked to recruit sellers and

b�2>0 for the agent tasked to recruit buyers. Conversely, the

commissions paid to the two agents based on network mobili-

zations of the sides they are not responsible to cultivate are

negative; that is, a�2<0 for the agent tasked to recruit sellers

and b�1<0 for the agent tasked to recruit buyers. The reverse,

however, is not true in the case of advertising-related plat-

forms, where Zb<0 since for such platforms b�1 becomes pos-

itive while a�2 remains negative. The literature on moral hazard

in teams, whereby the compensation of agent k is contingent on

agent k’s observed performance as well as on agent l’s

observed performance (with l 6¼ k), illuminates the economic

mechanism underlying the previous result (see, e.g., Section

8.1.3 in Bolton and Dewatripont 2005). In such situations, basing

an agent’s compensation on the agent’s own performance as well

as on the other agent’s performance is used as a relative perfor-

mance scheme intended to filter out the common shocks affect-

ing individual outputs and to reduce agents’ risk exposures.

Specifically, when common shocks are positively (negatively)

correlated, the commission rate based on the other agent’s output

should be negative (positive). In the case of platforms, when all

network effects are positive, common demand shocks on both

sides are positively correlated; that is, eb enters positively in qs

(see Equation 18), and es enters positively in qb. Thus, a2 (b1) is

negative to reduce the exposure of the agent tasked to mobilize

sellers (buyers) to the uncertainty coming from the buyers’ (sell-

ers’) side. Conversely, when Zb<0, shocks affecting adoptions

are not positively correlated. In such cases, eb still enters posi-

tively in qs, whereas es enters negatively in qb because of Zb

(i.e., es � Zb in Equation 18); thus, the platform should set a�2<0

while b�1>0 to optimally manage agents’ asymmetric risk expo-

sures and filter out common noise.4

Conclusion

Platforms are an exciting aspect of modern business. The pos-

itive feedback created by network effects, the immense

popularity of many new platforms, and excellent financial

indicators have created enormous interest in this business

model. However, setting up platforms and securing partici-

pation of key players is difficult and requires concerted

selling efforts. To our knowledge, the present study is the

first to examine selling strategy and sales force incentives

for two-sided markets. Our analysis demonstrates that the

existence of network effects indisputably alters the manage-

ment of sales force compensation plans and, most importantly,

that ignoring them when designing performance-based incen-

tives can hurt profits. We offer several results that answer our

initial research questions and are pertinent for platform

businesses.

Our results underline the complexity and richness of net-

work effects, and their influence on compensation plan

design for agents responsible for network mobilization. We

explain how direct and indirect network effects influence

compensation plan design differently in terms of the correct

mix of fixed salary and performance-based incentives. More-

over, our research emphasizes the limitations of the classical

compensation plan for two-sided markets, in which the

agent’s incentive payment is linked only to performance on

the agent’s assigned task of mobilizing the seller side. We

show that this structure is not sufficiently rich for the plat-

form to optimally manage the influence of network effects on

the agent’s selling effectiveness and compensation risk, and

that the platform’s profit can decrease when stronger network

effects are present. We show that to overcome this limitation,

the manager should link the agent’s pay to a second metric,

network mobilization on the buyer side, despite the fact that

the agent is not assigned to that side. This design restores a

positive relation between the strength of network effects and

profit, through better management of the spillover effects gen-

erated by network effects and, most importantly, better man-

agement of the agent’s exposure to risk.

With these results in place, our work creates possibilities

for future research. First, it would be interesting to revisit

some of the platform and sales force empirical literature in

light of our findings. Second, it would be useful to endogenize

the platform’s stand-alone quality and the intensity of net-

work effects, to explore the optimal design of platforms that

subsequently need to be sold by sales agents under moral

hazard. Finally, managers often use other marketing instru-

ments, such as advertising, to grow platforms (Sridhar et al.

2011), often using different instruments on different sides.

Thus, considering more than one marketing instrument would

provide valuable insights for the design of marketing budgets

and allocation strategies.

Appendix A: Microfoundations of Demands

We present how demands (Equation 2) might be derived from

microfoundations. Given the direct and cross-platform network

effects that are present, the utility obtained by a participant on

side i ¼ fb; sg of the market is influenced by product charac-

teristics (which affect stand-alone benefit and network

4 We furnish two additional extensions in the Web Appendix, with respect to a

negative margin on the buyer side and uncertain network effects.
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benefits), network and market parameters (which influence the

scale of network benefits), and agent effort (if a sales agent is

deployed on that side). On either side, market participants may

be heterogeneous in the stand-alone benefit they experience.

To capture this heterogeneity, the net stand-alone benefit on

side i is written as Vi � txi, where Vi is a proxy for intrinsic

product quality, and xi is a type-index for participants on side i

(assumed to be drawn from a uniform distribution). Therefore,

with regard to the stand-alone benefit, the utility depends only

on the focal user’s type rather than on adoption level or market

size, similar to the utility of a product without network effects.

The second and third components of the utility function are

network benefits from direct and/or indirect network effects.

These network benefits depend on network sizes (which we call

qi and qj respectively) and intensity of direct and cross-network

effects (gi and Zi respectively). The network size, qi, on side i is

the sum of the number of early adopters (denoted by

Mi ¼ mi þ ei, where ei follows Nð0;s2
i Þ), participants who are

risk-taking innovators not influenced by the agent’s effort, and

the number of followers, who are influenced by the agent and

join if they have nonnegative utility. The decisions of followers

are influenced both by the size of the early adopter group and

by network sizes on either side of the platform. We denote the

size of the follower group as x̂b and x̂s. The set of followers on

side i comprises participants whose type index is in ½0; x̂i�, with

x̂i being the locations of marginal participants (i.e., whose net

utility is zero). The total utility of a representative participant

xb or xs can then be written as

UbðxbÞ ¼ ðVb � t� xbÞ þ ½gbðx̂b þMbÞ� þ ½Zb � ðx̂s þMsÞ�; and

ðA1Þ

UsðxsÞ ¼ ðVs þ w� t� xsÞ þ ½gsðx̂s þMsÞ� þ ½Zs � ðx̂b þMbÞ� � p:

ðA2Þ

Normalizing the misfit cost to 1 (i.e., t ¼ 1), and equating

the two utility functions to zero for marginal participants (i.e.,

solving Ubðx̂bÞ ¼ 0 and Usðx̂sÞ ¼ 0), we obtain the equilibrium

level of the marginal followers on both sides as

x̂b ¼
ð1� gsÞðVb þ gbMbÞ þ ZbðMs þ Vs þ w� pÞ þ ZbZsMb

ð1� gbÞð1� gsÞ � ZbZs

; and

ðA3Þ

x̂s ¼
ð1� gbÞðVs þ gsMs þ w� pÞ þ ZsðMb þ VbÞ þ ZsZbMb

ð1� gbÞð1� gsÞ � ZbZs

:

ðA4Þ

The firm and the agent negotiate a compensation contract before

the agent starts mobilizing network participants, making Mi a ran-

dom variable at the time of contracting, which we assumed to be

normally distributed (mean mi and variance s2
i ),5 but which is

certain when network participants mobilize. Thus, at the time of

contracting, expected demands are E½qb� ¼ E½x̂b þMb� and

E½qs� ¼ E½x̂s þMs�, which comports with Equation 2.

Appendix B: Proof of Propositions

Proof of P1

Differentiating the objective function of Equation 5 and equat-

ing the resulting expression to zero yields Equation 10. Further-

more, the second-order derivative of Equation 5 equals �1,

which means that the second-order condition for a maximum

is met.

Proof of P2

As is standard in the agency literature, we first replace the

agent’s optimal effort strategy in the certainty equivalent of

the agent’s utility function and set a0 such that the resulting

expression equals the value of the outside option. We then

replace a0 and the agent’s effort strategy in the firm’s expected

profit and differentiate the resulting expression with respect to

the decision variable (i.e., a1), once for the first-order condition

and twice for the second-order condition. The first-order con-

dition yields a unique solution (Equation 2). The second-order

condition for a maximum is met when

ð2� gbÞgb<
1þ rðZss

2
b þ s2

s Þ
1þ rs2

s

:

Subtracting 2 from both sides of the inequality yields that

the second-order condition is met when

ð2� gbÞgb � 1<
Z2

srs
2
b

1þ rs2
s :

For gb<1, ð2� gbÞgb � 1<0; thus,

ð2� gbÞgb � 1<0<
Z2

srs
2
b

1þ rs2
s

;

which implies that the second-order condition for a maximum

is met.

Proof of P3

Replacing the optimal strategies under the traditional compen-

sation plan in the profit function yields that

E½P� ¼ L1 þ L2;

with

L1 ¼
p� ½ðVs � pÞð1� gbÞ þ ZsVb�
ð1� gbÞð1� gsÞ � ZbZs

; and ðB1Þ

L2 ¼
½p� ð1� gbÞ2�2

2½ð1� gbÞ2ð1þ rs2
s Þ þ rðZssbÞ2�

� 1

½ð1� gbÞð1� gsÞ � ZbZs�2
:

ðB2Þ

The sensitivities of L1 and L2 to network effects are

reported subsequently.

5 Specifically, Mi ¼ mi þ ei where ei is normally distributed with zero mean

and variance s2
i .
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qL1

qgs

¼ pð1� gbÞ½ðVs � pÞð1� gbÞ þ VbZs�
ð1� gbÞð1� gsÞ � ZsZb

2
; ðB3Þ

qL1

qgb

¼ pZs½Vbð1� gsÞ þ ðVs � pÞZb�
½ð1� gbÞð1� gsÞ � ZsZb�2

; ðB4Þ

qL1

qZs

¼ pð1� gbÞ½Vbð1� gsÞ þ ðVs � pÞZb�
½ð1� gbÞð1� gsÞ � ZsZb�2

; ðB5Þ

qL1

qZb

¼ pZs½ðVs � pÞð1� gbÞ þ VbZs�
½ð1� gbÞð1� gsÞ � ZsZb�2

; ðB6Þ

qL2

qgs

¼ p2ð1� gbÞ5

½ð1� gbÞð1� gsÞ � ZsZb�3 ð1� gbÞ2ð1þ rs2
s Þ þ rZ2

ss
2
b

h i ; ðB7Þ

qL2

qgb

¼ �
p2ð1� gbÞ3Zs ð1� gbÞð1� gsÞZsrs

2
b � Zb ð1� gbÞ2ð1þ rs2

s Þ þ 2rZ2
ss

2
b

h in o

½ð1� gbÞð1� gsÞ � ZsZb�3 ð1� gbÞ2ð1þ rs2
s Þ þ rZ2

ss
2
b

h i2
; ðB8Þ

qL2

qZs

¼
p2ð1� gbÞ2 �ð1� gbÞð1� gsÞZsrs

2
b þ Zb ð1� gbÞ2ð1þ rs2

s Þ þ 2rZ2
ss

2
b

h in o
½ð1� gbÞð1� gsÞ � ZsZb�3 ð1� gbÞ2ð1þ rs2

s Þ þ rZ2
ss

2
b

h i2
; and ðB9Þ

qL2

qZb

¼ qL2

qgs

� Zs

1� gb

: ð36Þ

Proof of P4

The first-order condition for the agent’s effort strategy yields

w� ¼ pð1� gbÞa1 þ a2Zb

ð1� gbÞð1� gsÞ � ZsZb

: ðB10Þ

Furthermore, this is a maximum since the second-order condi-

tion for the agent’s effort strategy yields �1. We then replace

the agent’s optimal effort strategy (Equation B10) in the cer-

tainty equivalent of the agent’s utility function under the two-

sided compensation plan and set a0 such that the resulting

expression equals the value of the outside option. We then

replace a0 and the agent’s effort strategy in the firm’s expected

profit and differentiate the resulting expression with respect to

the decision variables (i.e., a1 and a2), once for the first-order

condition and twice for the second-order condition. The

first-order condition yields the unique solution provided in

P4. The determinant of the Hessian of the profit function equals

p2rs2
bð1þ rs2

s Þ
½ð1� gbÞð1� gsÞ � ZbZs�2

>0; ðB11Þ

while q2E½P�=qa2
1<0 when ð2�gbÞgb� 1<Z2

srs
2
b=ð1þrs2

s Þ,
which is true for any gb<1 as demonstrated in the proof of

P2. Thus, the commission rates provided in P4 maximize

profit.

We then proceed by replacing the agent’s optimal effort

strategy in the agent’s expected utility function to identify a0

such that the IR condition is met and then replace the resulting

expression for a0 and the optimal effort strategy in the firm’s

profit function. We next differentiate the firm’s profit with

respect to p, a1, and a2 and equate the resulting expressions
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to zero to obtain the equilibrium displaying the firm’s expected

profit under the new plan,

E½P�� ¼ p
ð1� gbÞðVs � pÞ þ ZsVb

ð1� gbÞð1� gsÞ � ZsZb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contributions of Stand -Alone Values

þ p2ð1� gbÞ2

2½ð1� gbÞð1� gsÞ � ZsZb�2ð1þ rs2
s Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Contribution of Selling

:

ðB12Þ

As a result, the difference between the equilibrium profit

under this plan and the equilibrium profit under the traditional

compensation plan is

dP ¼
½pð1� gbÞZssb�2

2½ð1� gbÞð1� gsÞ � ZbZs�2½ð1� gbÞ2ð1þ rs2
s Þ þ rZ2

ss
2
b�

� r
1þ rs2

s

>0;

ðB13Þ
which is always positive.

Finally, the sensitivity analyses of profit under the new

plan with respect to network effects are provided in

Table B1, where O1 and O2 are the contributions of the

stand-alone values and of selling to the firm’s profit, respec-

tively, as provided previously.

Proof of P5

The first-order condition for the agent’s effort yields a

unique solution, which is a maximum since the second-

order derivative is �1. We then proceed by replacing the

agent’s optimal effort strategy in the agent’s expected utility

function to identify a0 such that the IR condition is met and

then replace the resulting expression for a0 and the optimal

effort strategy in the firm’s profit function. We then differ-

entiate the firm’s profit with respect to p, a1, and a2 and

equate the resulting expressions to zero to obtain the equili-

brium displayed in P5, where

P1 ¼
½ð1� gbÞð1� gsÞ � ZbZs�ð1þ rs2

s Þ
ð1� gbÞfð1� gbÞð1� 2gsÞ � 2ZbZs þ 2½ð1� gbÞð1� gsÞ � ZbZs�rs2

s g
: ðB14Þ

We then proceed in two steps to verify that this point is a

maximum. First, we check for the optimality of the com-

mission rates for any price, and then we check for the

optimality of the pricing strategy given the equilibrium

commission rates. For any p, the second-order conditions

for the commission rates are met since the determinant of

the Hessian is positive and the second-order derivative of

profit with respect to a1 is negative. Given the optimal

commission rates, the second-order condition with respect to p

is met when ð1� gbÞð1� gsÞ � ZbZs>ð1� gbÞ=½2ð1þ rs2
s Þ�,

which (knowing that a1<1 in a valid plan) always holds

with gs<1=2.

Proof of P6

The agents’ first-order conditions yield the effort strategies

provided in Equation 19, which are maxima since the

second-order conditions for the agents’ optimization problems

yield �1. The principal’s first-order conditions yield the com-

mission rates provided in P6. Given the mathematical structure

of the principal’s optimization problem, we can analyze the

optimality of ða�1; a�2Þ independently from the optimality of

ðb�1; b�2Þ. The determinant of the Hessian of the profit function

with respect to ða�1; a�2Þ is positive and q2E½P�=qa�1qa�1 is neg-

ative when ð2� gbÞgb<½1þ rðZss
2
b þ s2

s Þ�=ð1þ rs2
s Þ, which

holds true for gb<1. Thus, ða�1; a�2Þ is a maximum. Similarly,

the Hessian of the profit function with respect to ðb�1; b�2Þ is

positive, and q2E½P�=qb�1qb�1 is always negative. Thus,

ðb�1; b�2Þ is a maximum.
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Table B1. Impacts of Network Effects on Profits Under the Two-Dimensional Plan.

y! gs gb Zs Zb

qO1=qy mð1� gbÞ½ðVs � pÞð1� gbÞ þ VbZs�
=½ð1� gbÞð1� gsÞ � ZsZb�2

pZs½Vbð1� gsÞ þ ðVs � pÞZb�
=½ð1� gbÞð1� gsÞ � ZsZb�2

mð1� gbÞ½Vbð1� gsÞ þ ðVs � pÞZb�
=½ð1� gbÞð1� gsÞ � ZsZb�2

pZs½ðVs � pÞð1� gbÞ þ VbZs�
=½ð1� gbÞð1� gsÞ � ZsZb�2

qO2=qy ½p2ð1� gbÞ3=ð1þ rs2
s Þ�

=½ð1� gbÞð1� gsÞ � ZsZb�3
½p2ð1� gbÞZbZs=ð1þ rs2

s Þ�
=½ð1� gbÞð1� gsÞ � ZsZb�3

½p2ð1� gbÞ2Zb=ð1þ rs2
s Þ�

=½ð1� gbÞð1� gsÞ � ZsZb�3
½p2ð1� gbÞ2Zs=ð1þ rs2

s Þ�
=½ð1� gbÞð1� gsÞ � ZsZb�3
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