Homogenous Contracts for Heterogeneous Agents: Jointly Optimizing Salesforce Composition and Compensation

Sanjog Misra Harikesh S. Nair Oystein Daljord

This version: July 17, 2012

Abstract

Agency theory on contract choice with moral hazard has typically considered the principal’s problem of choosing an optimal contract to incentivize a set of agents taking the set of agents as given. We consider a situation where the principal can choose both agents and incentives. Our application is to salesforce compensation, in which a firm maintains a salesforce to market its products. Consistent with ubiquitous real-world business practice, we assume the firm is restricted to fully or partially set uniform contractual terms across its agent pool. We consider the joint choice of compensation and composition by the firm. We illustrate that endogenizing the type of agents retained has non-trivial implications for the shape of the optimal contract chosen. In our model, the presence of a sales-agent in the firm indirectly affects the behavior of other agents in the pool even when agents have exclusive territories and there are no across-agent complementarity or substitution effects in output, by changing the shape of the common element of the incentive contract. The “contractual externality” complicates the assessment of the value of an agent to the firm: a low type agent is not of much value to the firm because his presence reduces the firm’s ability to offer high-powered incentives to the others, but a high-type may also not be valuable if his presence requires the firm to offer incentives that are too high-powered for the remaining agents. Our model can help quantify the value incorporating this externality. We present an empirical application to salesforce contracting at a Fortune 500 seller of contact-lenses. Operationalizing the theory requires solving a large-scale combinatorial optimization problem in which the firm chooses one of 2^M possible salesforce configurations from amongst a pool of M potential agents, and solving for the optimal common incentive contract for the chosen pool. We illustrate how recently developed fast optimizers may be used to implement our approach in practical settings. Our estimates show that allowing the joint optimization of agent types and incentives substantially alters the profile of effort, output and payoffs to the principal and the agents in the data. We find that the restriction to homogenous plans significantly reduces the payoffs of the firm relative to a fully heterogeneous plan when its unable to optimize the composition of its agents. However, the firm’s payoffs come very close to that of the fully heterogeneous plan when it can optimize both composition and compensation. In this sense, the ability to
choose agents may help rationalize the prevalence of homogenous salesforce contracts in the real-world in spite of the reduced incentive effects implied by their use.

Keywords: Marketing, Salesforce Compensation, Incentives, Contracts.
1 Introduction

Rigidities in the ability to set contract terms across a pool of agents of heterogeneous ability is a common feature of salesforce compensation settings. Due to reasons of sales-agent inequity aversion, concerns for fairness in evaluation, preferences for simplicity, or different kinds of menu costs, firms often set the same compensation terms across all agents on their books, often fully or partially ignoring sales-agents heterogeneity when tailoring firm-wide incentives. For instance, a firm choosing a salary + commission salesforce compensation scheme may set the same commission rate for every sales-agent on its payroll, in spite of the fact that exploring the heterogeneity and setting an agent-specific commission may create theoretically better incentives at the individual level. While reasons are varied, full or partial uniformity is an ubiquitous feature of real-world salesforce compensation (Rao 1990; Mantrala et al. 1994; Raju and Srinivasan 1996; Zoltners et al. 2001). The focus of this paper is on the implications to the firm of this restriction to similar contract terms across agents. We do not take a strong stance on the source of the uniformity, but focus on the fact that uniformity creates an interaction between the composition of agent types in the contract and the compensation policy used to motivate them.

As an example, consider a firm that has chosen a salary + commission scheme. Dropping the bottom tail of agents from its books (firing them for instance) could enable the firm to profitably raise commissions for the rest of agents. Alternatively, dropping the bottom tail of agents from its books might imply that a uniform bonus scheme is a better contract form for the residual agent pool than a linear commission. In these examples, the restriction to uniformity implies the composition and compensation are codependent. This is our first point. To the best of our knowledge, this point has not been emphasized in the existing principal agent theory and salesforce compensation literature, which typically formulates the principal’s problem as choosing the optimal incentive contract taking the set of agents in its pool as given. Whereas an existing literature (reviewed later) has emphasized that “high-powered” performance-based contracts affects the type of agents that sort into the firm, surprisingly, the theory and empirical work has not formalized the endogenous choice by a principal of both agents and incentives simultaneously. Here, we allow the principal to choose the distribution of types in his firm along with the optimal contract form given that type distribution.

Our second point is that uniformity implies the presence of a sales-agent in the firm imposes an externality on the other agents in the pool through its effect on the shape of the common element of the incentive contract. This contractual externality persists when agents have exclusive territories and there are no across-agent complementarity or substitution effects in output. It is thus distinct from across-agent effects induced by relative performance schemes or team-selling, two other contexts which have been emphasized in the literature wherein one agent’s characteristics or actions substantively affects another’s welfare (Holmstrom 1982; Kandel and Lazear 1992; Hamilton et al. 2003; Boning et al. 2004).
2007). For instance, suppose agents are homogenous on all respects except for their risk aversion, and there are three agents, A, B and C, who could be employed, with C being the most risk averse type. Retaining C in the firm implies the common commission rate the firm would set with C is lower than without, because C needs more insurance than A and B. It could then be that A and B are worse off with C in the firm (lower commissions) than without. Thus, the presence of the low-type agent imposes a cost on the other sales-agent in the firm through the endogeneity of contract choice.

This externality can be substantial when agent types are multidimensional (for example, when agents are heterogeneous in risk aversion, productivity and costs of expending sales effort). To see this, note that in the example above, it may be optimal for the principal to rank agents on the basis of their risk aversion and to drop the “low-type” C from the agent pool. Hence, if risk aversion were the only source of heterogeneity, and we enlarge the contracting problem to allow the principal to choose both the optimal composition and compensation, it may well be that “low-types” like C impose little externalities because they are endogenously dropped from the firm. Now, consider what happens when types are multidimensional. Suppose in addition to risk aversion, agents are heterogeneous in their productivity (in the sense of converting effort into output), and it so happens that C, the most risk averse, is also the most productive. Then, the principal faces a tradeoff: dropping C from the pool enables him to set more high powered incentives to A and B, but also entails a higher loss in the level of output because C is the most productive. In this tradeoff, it may well be that the optimal strategy for the principal is to retain C in the agent-pool and to offer all the lower common commission induced by his presence. Thus multidimensional types increase the chance that the externalities we discussed above persist in the optimally chosen contract. More generally, multidimensionality of the type space also points to the need for a theory to describe who should be retained and who should be let go from the salesforce, because agents cannot be ranked as desirable or undesirable on the basis of any one single metric.

Our main question explores the co-dependence between composition and compensation. We ask to what extent composition and compensation substitute or complement each other in realistic salesforce settings. We use an agency theoretic set-up in which the principal chooses both the set of agents to retain in the firm and the optimal contract to innocent the retained agents. We use our model to assess how contract form changes when the distribution of ability changes. This is an interaction that has not been addressed in the theory to our knowledge. The answer to this is dependent on the distribution of heterogeneity in the agent pool, and hence is inherently an empirical question.

Our analysis is related to a literature that emphasizes the “selection” effect of incentives, for example, Lazear’s famous 2000 analysis of Safelite Glass Corporation’s incentive plan for windshield installers, in which he demonstrates that higher-ability agents remain with the company after it switched from a straight salary to a piece-rate; or Bandiera et al.’s 2007 analysis of managers at a fruit-picking company, who started hiring more high ability
workers after they were switched to a contract in which pay depended on the performance of those workers). Lazear and Bandiera et al. present models of how the types of agents that sort into or are retained at the firm changes in response to an exogenously specified piece-rate. In our set-up, the piece-rate itself changes as the set of agents at the firm changes, because the firm jointly chooses the contract and the agents. The endogenous adjustment of the contract as the types change is key to our story. A related literature on contract design in which one principal contracts with many agents focuses on the conditions where relative incentive schemes arise endogenously as optimal, and not on the question of the joint choice of agents and incentives, which is our focus here. Broadly speaking, the relative incentive scheme literature focuses on the value of contracts in filtering out common shocks to demand and output, and on the advantages of contracting on the ordinal aspect of outputs when output is hard to measure (e.g., Lazear and Rosen 1981; Green and Stokey 1983; Mookerjee 1984; Kalra and Shi 2001; Lim et al. 2009; Ridlon and Shin 2010). Common shocks and noise in the output measure are not compelling features of our empirical setting which involves selling of contact-lenses to optometrists, for which seasonality and co-movement in demand is limited, and sales (output) are precisely tracked. A small theoretical literature also emphasizes why a principal may choose a particular type of agent in order to signal commitment to a given policy (e.g., shareholders may choose a “visionary” CEO with a reputation for change-management so as to commit to implementing change within the firm: e.g., Rotemberg and Saloner, 2000). Our point, that the principal may choose agents for incentive reasons, is distinct from that in this literature which focuses on commitment as the rationale of the principal for its choice of agents. A related theoretical literature has also noted that contracts may signal information that affects the set of potential employees or franchisees a principal may contract with (Desai and Srinivasan 1995; Godes and Mayzlin 2012), without focusing on the principal’s choice of agents explicitly.

We leverage access to a rich dataset containing the joint distribution of output and contracts for all sales-agents at a Fortune 500 contact lens company in the US. Following Misra and Nair (2011), we use these data to identify primitive agent parameters (cost of effort, risk aversion, productivity), and to estimate the multidimensional distribution of heterogeneity in these parameters across agents at the firm. In the data, agents are paid according to a nonlinear, quarterly incentive plan consisting of a salary and a linear commission which is earned if realized sales are above a contracted quota and below a pre-specified ceiling. The nonlinearity of the incentive contract creates dynamics in the agent’s actions, causing the agent to optimally vary his effort profile as he moves closer to or above his quota. The joint distribution of output and the distance to the quota thus identify “hidden” effort in this moral hazard setting. Following Misra and Nair (2011), we combine this identification strategy with a structural model of agent’s optimization behavior to recover the primitives underpinning agent types. We then use these estimates as an input into a model of simultaneous contact form and agent composition choice for the principal.
Solving this model involves computing a large-scale combinatorial optimization problem in which the firm chooses one of 2^M possible salesforce configurations from amongst a pool of M potential agents, and solving for the optimal common incentive contract for the chosen pool (M is around 60 in our application). We find that the recently developed “cross entropy” method (Rubenstein 1997; De Boer et al. 2005) is a practical and reliable way to solve this large-scale optimization problem in realistic settings.\footnote{We experimented with a variety of other optimization methods including simulated annealing and genetic algorithms and found the cross entropy method to be significantly superior in our setting in terms of both speed and reliability.}

We then use the model to simulate counterfactual contracts and agent pools. We explore to what extent a change in composition of the agents affects the nature of optimal compensation for those agents, and quantify the profit impact of jointly optimizing over composition and compensation. As a useful by-product of the model, we also simulate a metric which quantifies the value of each potential sales-agent in the pool to the firm. The key insight underlying our metric is that the value of an agent to the firm is not simply the present discounted value of the sales he generates minus the compensation to be paid out to him. Rather, our metric recognizes that the value of an agent has to be defined relative to a counterfactual in which we ask how outcomes would look if the agent were dropped from the firm. A complete counterfactual would take into account that dropping an agent from the firm will change the distribution of sales and payouts for every other agent in the firm through its effect on the changed commission the firm would charge subsequently to its residual agent pool. We simulate this counterfactual for each agent in the data using our model and parameters. We find that our metric does not map one-to-one to simple summary metrics like estimated risk aversion, productivity or past sales, emphasizing the need to carefully consider the joint impact of multidimensional types in such an evaluation, and the need for a formal model to compute such a metric.

Counter intuitively, we show that the most valuable agent to the firm is not necessarily the one with the highest productivity or profitability (defined as output − payout). Rather, we find the value of an agent is dependent on the distribution of types in the firm. For example, if there is only one “star” sales-agent in a firm and the rest are “duds,” retaining the star will require the firm to provide high commissions, which is sub-optimal for incentivizing the remaining duds. Thus, it may be optimal to drop the star and to fine tune the commission to better align it to the characteristics of the duds. In this example, the star is not very valuable to the firm.\footnote{Alternatively, it may be optimal to find another way outside of regular compensation to incentivize the “star” say, via fast-tracked promotions, public recognition, “President’s Club” status, etc.} The model-based metric we compute incorporates this insight. More generally, we find in several situations that the value of an agent to the firm as a function of his productivity has an inverted “U-shape”: intuitively, a low-productive agent is not of much value, but a highly productive one may also not be of much value because of the externality he induces on the actions of others via compensation. We use our metric to identify a set of agents who fall in bottom tail of the distribution of agents (least
desirable from the firm’s perspective). As a casual ex-post validation of this counterfactual exercise, the focal firm in our data actually ended up firing 4 workers who can be identified as not desirable ex ante according to the metric.

Finally, we find that allowing the firm to optimize the composition of its types has bite in our empirical setting. When the firm is restricted to homogenous contracts and no optimization over types, we estimate its payoffs are significantly lower than that under fully heterogeneous contracts. However, the payoffs under homogeneous contracts when the firm can optimize both composition and compensation come very close to that under fully heterogeneous contracts. Thus, the ability to choose agents seem to help balance the loss in incentives from the restriction to homogeneity, at least in this empirical example. We conjecture this may be broadly relevant in other settings and may help rationalize the prevalence of homogenous contracts in many salesforce settings in spite of the profit consequences of reduced incentives.

While our context is salesforce compensation, similar ideas to the one explored here arise in other contexts of interest to marketing. For instance, firms often set nonlinear tariff plans to create second-degree discrimination mechanisms that achieve profitable sorting of consumers of differing unobserved valuations into varying price-quality-quantity options. Analogous to our point about sales-forces, the form of the nonlinear tariff chosen by the firm depends on the distribution of types it chooses to target. For instance, consider a wireless carrier deciding whether to target a high-valuation consumer segment, a low-valuation segment, or both, by offering nonlinear cell-phone tariffs (e.g., flat-rate, two-part and three-part tariff plans). If the firm decides to target both types, it will have to optimally offer a low-price or quality option to appeal to the low-end segment, which in turn implies it has to give away more surplus to the high-valuation consumers in its high-end “Cadillac” plans, so as to prevent them from trading down to the low-end plan. A decision to target only the high-valuation segment however implies the firm optimally does not have to offer the low-end plan. Depending on the distribution of types and costs, it could be this niche strategy is more profitable than targeting the entire market. In this example, the choice of which distribution of consumers to sell to, and the decision of what nonlinear tariff option to offer that distribution is joint and interdependent. Our analysis therefore motivate development of richer empirical models of the joint choice of who and how to offer product options to consumers in the analysis of price discrimination mechanisms, and of contexts with screening in competitive situations, more generally (e.g., Schmidt-Mohr and Villas-Boas, 2008).

2 The General Setup

Consider a pool of heterogeneous sales-agents indexed by \(i = 1 \ldots N \) employed at an ongoing firm. The firm wishes to optimize the composition and compensation of its salesforce. Reflecting our empirical application, we assume the firm has divided its potential market
into \(N \) geographic territories, and the maximum demand at the firm is for \(N \) sales-agents.\(^3\) Let \(\mathcal{M}_N \) denote the power-set spanned by \(N \) (that is, all possible sub-salesforces that could be generated by \(N \)), and \(\mathbb{W}_M \) the set of compensation contracts possible for a specific sub-salesforce \(\mathcal{M} \). For now assume that the firm cannot replace the agents it fires (we will relax this assumption in an extension). Let \(S_i \) denote agent \(i \)'s output, \(W(S_i) \) his wages conditional on output, and \(F(S_i|e_i) \) denote the CDF of output conditional on effort choice, \(e_i \). Effort \(e_i \) is privately observed by the agent and not by the principal, while output \(S_i \) is observed by both the agent and the principal, and hence is contractible. As is common in the agency literature, we assume that the agent chooses effort before sales are realized, that both he and the principal share the same beliefs about the conditional distribution of output \((F(S_i|e_i)) \) (common knowledge about outcomes), and that the principal knows the agent’s type (no learning or adverse selection).\(^4\) Since sales are stochastic, the principal cannot back out the hidden effort from realized output, which generates the standard moral hazard problem.

The principal maximizes,

\[
\max_{\mathcal{M} \in \mathcal{M}_N, W \in \mathbb{W}_M} \Pi = \int \sum_{i \in \mathcal{M}} [S_i - W(S_i)] dF(S_i|e_i) \tag{1}
\]

where the control, \((\mathcal{M}, W)\), is the set of active agents and their compensation. The maximization is subject to the Incentive Compatibility (IC) constraints, that the effort chosen by each agent \(i \) is optimal,

\[
e_i = \arg \max_e \int U(W(S_i), C(e; \mu_i)) dF(S_i|e) \quad \forall i \in \mathcal{M} \tag{2}
\]

and the Individual Rationality (IR) constraints that each active agent \(i \) receives at least expected reservation utility \(U_i^0 \) from staying with the firm and working under the suggested contract,

\[
\int U(W(S_i), C(e; \mu_i)) dF(S_i|e_i) \geq U_i^0 \quad \forall i \in \mathcal{M} \tag{3}
\]

The above set-up endogenizes the principal’s choice of the agent pool in the following way. The principal knows each agent’s type (including reservation utility). He designs a contract such that the IR constraints in equation (3) are satisfied only for the set of agents in \(\mathcal{M} \) and violated for all others. This contract thus induces the chosen set of agents in \(\mathcal{M} \) to stay and the rest to leave to pursue their outside option. This set-up is a reasonable way to

\(^3\)In this paper, we abstract away from the sales-territory assignment problem (e.g., Skiera and Albers, 1998). In non-salesforce settings, the need for a maximum of \(N \) agents can be thought of as implying that total output for the firm is concave in \(N \).

\(^4\)In our data, learning about agent type is not of first-order importance because most agents have been with the firm for a long time (mean tenue 9 years). However, this may be an important dynamic for new workers.
capture the tradeoffs of a firm with an existing salesforce which is redesigning its salesforce contract so as to endogenously induce some agents to stay and some to quit. Modeling the problem for a new firm that is building a salesforce from scratch will require extending this model to formalize new agent hiring and learning.\(^5\)

Finally, we assume the firm has exclusive territories for its agent (consistent with our empirical context). To complete the model, we also need to specify what happens to demand from a territory managed by an agent if that agent is dropped from the firm. We use two assumptions, first that sales are 0 if a territory has no active agent, and the second, that sales equivalent to the intercept in the output function (discussed below) continue to accrue to the firm even if no agent operates in that territory. The latter assumption encapsulates the notion that a base level of sales will be generated to the firm even in the absence of any marketing or salesforce effort.

Equivalent Bi-level Setup We now reformulate the problem by allowing to principal to choose the optimal configuration in a first step, and then solving point wise for the optimal contract for the chosen configuration. The program described above is equivalent to the case where the principal maximizes,

\[
\max_{\mathcal{M} \in \mathbb{M}_N} \Pi = \int \sum_{i \in \mathcal{M}} [S_i - W_{\mathcal{M}}(S_i)] dF(S_i|e_i)
\]

with,

\[
W_{\mathcal{M}} = \arg\max_{W \in \mathbb{W}_\mathcal{M}} \int \sum_{i \in \mathcal{M}} [S_i - W(S_i)] dF(S_i|e_i)
\]

subject to the IC and IR constraints as before. Since \(W_{\mathcal{M}}\) is point-wise the optimal compensation plan for each sub-salesforce \(\mathcal{M} \in \mathbb{M}_N\), the solution to this revised problem returns the solution to the original program. Representing the program this way helps understand our numerical algorithm for solution more clearly.

3 Application Setting

We now discuss the parametric assumptions we impose so as to operationalize the setup above for our empirical setting. We consider a firm that employs a pool of heterogeneous agents indicated by \(i = 1, \ldots, N\). Each agent is described completely by a tuple \(\{h_i, k_i, d_i, r_i, \sigma_i, U^o_i\}\). The elements of the tuple will become clear in what follows. Sales are

\(^5\)To assess robustness, in some of our simulations we informally accommodate hiring by allowing the firm the option to hire new agents from a type distribution similar to its existing agent pool.
assumed to be generated by the following functional,

\[S_i = h_i + k_i e_i + \sigma_i \varepsilon_i \] \hspace{1cm} (5)

This functional has been used in the literature (see e.g. Lal and Srinivasan 1992; Holmstrom and Milgrom 1987) and interprets \(h \) as the expected sales in the absence of selling effort (i.e. \(E[S_i|\varepsilon_i = 0] = h_i \)), \(k \) as the marginal productivity of effort and \(\sigma^2 \) as the uncertainty in the sales production process. As is usual, we assume that the firm only observes \(S_i \) and knows \{\(h, k, \sigma \}\) for all agents. The density \(F(S_i|e_i) \) is induced by the density of \(\varepsilon_i \). We will assume the firm sets linear contracts with compensation given as \(\alpha_i + \beta S_i \) (see Holmstrom and Milgrom 1987 for justifications for the optimality of linear contracts).

The agent’s utility function is defined as CARA,

\[U_i = - \exp \{ -r_i W_i \} \] \hspace{1cm} (6)

with wealth linear in output, and costs which are quadratic in effort,

\[W_i = \alpha_i + \beta S_i - \frac{d_i^2}{2} e_i^2 \] \hspace{1cm} (7)

The agent maximizes expected utility,

\[
E[U_i] = - \int \exp \left\{ -r \left(\alpha_i + \beta S_i - \frac{d_i^2}{2} e_i^2 \right) \right\} dF(\varepsilon_i) \\
= - \exp \left\{ -r \left(\alpha_i + \beta \left(h_i + k_i e_i \right) - \frac{d_i^2}{2} e_i^2 - \frac{r_i}{2} \beta^2 \sigma_i^2 \right) \right\}
\] \hspace{1cm} (8)

The Certainty Equivalent is,

\[CE_i = \alpha_i + \beta \left(h_i + k_i e_i \right) - \frac{d_i^2}{2} e_i^2 - \frac{r_i}{2} \beta^2 \sigma_i^2 \] \hspace{1cm} (9)

which implies that the optimal effort for the agent is,

\[e_i(\beta) = \frac{\beta k_i}{d_i} \] \hspace{1cm} (10)

3.1 The Principal’s Problem

The principal treats agents as exchangeable and cares only about expected profits,

\[
E[\Pi] = E \left[\sum_{i=1}^{N} (S_i - \beta S_i - \alpha_i) \right]
\] \hspace{1cm} (11)
which is maximized subject to,

\[IC : e_i(\beta) = \frac{\beta k_i}{d_i} \]

\[IR : CE_i \geq U_i^o \] (12)

The problem can be simplified by first incorporating the IC constraint,

\[E[\Pi] = \sum_{i=1}^{N} (E(S_i) - \beta E(S_i) - \alpha_i) \]

\[= \sum_{i=1}^{N} (1 - \beta) (h_i + k_i e_i(\beta)) - \alpha_i \] (13)

Further if the IR constraint is binding we have,

\[\alpha_i = U_i^o - \left[\beta(h_i + k_i e_i(\beta)) - \frac{d_i}{2} e_i^2(\beta) - \frac{r_i}{2} \beta^2 \sigma_i^2 \right] \] (14)

and substituting in we have,

\[E[\Pi] = \sum_{i=1}^{N} \left[(1 - \beta)(h_i + k_i e_i(\beta)) - U_i^o + \left\{ \beta(h_i + k_i e_i(\beta)) - \frac{d_i}{2} e_i^2(\beta) - \frac{r_i}{2} \beta^2 \sigma_i^2 \right\} \right] \]

\[= \sum_{i=1}^{N} \left[h_i + k_i e_i(\beta) - U_i^o - \frac{d_i}{2} e_i^2(\beta) - \frac{r_i}{2} \beta^2 \sigma_i^2 \right] \] (15)

Differentiating with respect to \(\beta \) we get,

\[\frac{\partial E[\Pi]}{\partial \beta} = \sum_{i=1}^{N} k_i e_i'(\beta) - d_i e_i'(\beta) - r_i \beta \sigma_i^2 \] (16)

where,

\[e_i'(\beta) = \frac{\partial e_i(\beta)}{\partial \beta} = \frac{k_i}{d_i} \] (17)

which gives the optimal uniform commission,

\[\beta^* = \frac{\sum_{i=1}^{N} \frac{k_i^2}{d_i}}{\sum_{i=1}^{N} \frac{k_i^2}{d_i} + \sum_{i=1}^{N} r_i \sigma_i^2} \] (18)
The salary, α^*_i can be obtained by substitution. Equation (18) encapsulates the effect of each agent type on the contract: the optimal α^*_i, β^* depends on the distribution of characteristics of the entire agent pool. Equation (18) demonstrates the contractual externality implied by homogeneity restrictions: when an agent joins or leaves the salesforce, he affects everyone else by changing the optimal β^*.

Intuitively, suppose the firm has the option of retaining three agents with low, medium and high risk aversion. If forced to retain all three on the payroll on a salary + commission scheme, the firm is not able to have a very high-powered incentive scheme with a high commission rate because the high risk-averse agent has to be provided significant insurance. Firing the high risk averse agent will allow the firm to optimally charge a higher commission rate to the remaining two agents. Depending on the productivity and cost parameters of the three agents, we can construct examples where the payoffs to the firm with two agents and the high commission are higher than with three agents and the lower commission.

Finally, to see how the profit function depends overall on agent’s types, we can write equation (15) evaluated at the optimal commission β^* as,

$$E[\Pi(\beta^*)] = \sum_{i=1}^{N} (h_i - U_{i}^0) + \frac{\beta^*}{2} \left(\sum_{i=1}^{N} \frac{k^2_i}{d_i} \right)$$

(19)

Noting that d_i is the agent’s cost of effort, we can think of $1/d_i$ as a measure of the agent’s efficiency – those with higher $1/d_i$ expend the same effort at lesser cost. Equation (19) can be interpreted as decomposing the firm’s total profits at the optimally chosen incentive level into two components. The first comprises the total baseline revenue from each agent when each is employed, but expending zero effort, $(h_i - U_{i}^0)$. The second is the optimal commission rate times a weighted average of each agent’s efficiency ($1/d_i$), where the weights correspond to each agent’s productivity (k^2_i). The first part is the insurance component of the incentive scheme, while the second part reflects incentives. Equation (19) also shows that profits are separable across agents except for the choice of β^*. In the absence of endogenizing β^*, the decision to retain an agent i in the pool has no bearing on the decision to retain another.

Substituting for the optimal β^* from equation (18), we can write the total payoff to the principal with optimally chosen incentives as,

$$E[\Pi] = \sum_{i=1}^{N} (h_i - U_{i}^0) + \frac{1}{2} \left(\frac{\sum_{i=1}^{N} k_i^2}{\sum_{i=1}^{N} \frac{k_i^2}{d_i} + \sum_{i=1}^{N} r_i^2 \sigma_i^2} \right)$$

(20)

Equation (20) shows the effect of endogenizing β^*: the payoff across agents is no longer separable across types. Equation (20) defines the firm’s optimization problem over the N agent types given optimal choice of incentives for each sub-configuration.
A Simple 3-Agent Example

For illustration, we choose the following agent profiles:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Agent 1</th>
<th>Agent 2</th>
<th>Agent 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>σ</td>
<td>7</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>U^0</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>k</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>h</td>
<td>8</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

For what follows, note that agent 3 has the highest productivity (k), the middle level of risk aversion (r), and the lowest cost of effort (d). As a base case, we first compute the optimal salary + commission for each agent separately, which we call the “fully heterogeneous” contract. Under this situation, the firm would retain each agent, and provide each a commission tailored to his type, setting a salary that leaves each his reservation utility. For the fully heterogeneous plan, we have:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Profits</th>
<th>Commission Rate</th>
<th>Sales</th>
<th>Effort</th>
<th>Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>$\mathbb{E}(\Pi_M)$</td>
<td>β</td>
<td>$\mathbb{E}(\sum S_i)$</td>
<td>$\sum e_i$</td>
<td>$\mathbb{E}(W_i)$</td>
</tr>
<tr>
<td>(1, 1, 1)</td>
<td>9.10</td>
<td>(0.0841, 0.0618, 0.2067)</td>
<td>30.20</td>
<td>1.32</td>
<td>21.10</td>
</tr>
</tbody>
</table>

Now consider what happens when the firm is restricted to a common commission (but different salary) for each agent. We refer to this as the “partially homogenous” contract. The results are below. Solving for each configuration, we find that the firm would optimally drop agent 3 from the pool (expected payoff of $8.51 with an optimal common commission rate to agents 1 and 2 of 6.71%). Including the agent in the pool requires the firm to set a higher commission rate (11.57%), which is too high for the other agents, reducing the firm’s payoffs to $8.32. Looking at the top four rows, we see that agent 3’s presence in the pool exerts an externality on the others. If only agent 3 is retained, he would be paid a high-powered commission rate of 20.66%, while agents 1 and 2 prefer commissions of only 8.41% and 6.18% respectively. In this example, the firm is better off dropping the high-powered sales-agent from the pool so that it can incentivize the others to work harder: without agent 3, the firm can set an intermediate level of commissions that is better aligned with the other two types. The firm makes lower sales with only agents 1 and 2 (19.02 with only agents 1 and 2, versus 28.65 with all three), but compensation payout is also lower, and the net effect is a higher profit. By changing parameters, we can generate other examples where the “low” type is dropped from the pool in order to
set high-powered incentives for the remaining agents, which is the mirror-image to this setting. The example below also illustrates the complication induced by multidimensional types: the desirability of an agent cannot be ordered on any one dimension, emphasizing the need for a theory of behavior in order to assess the relative value of the sales-agents in the company.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Profits</th>
<th>Commission Rate</th>
<th>Sales</th>
<th>Effort</th>
<th>Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>$\mathbb{E}(\Pi_M)$</td>
<td>β</td>
<td>$\mathbb{E}(\sum S_i)$</td>
<td>$\sum \epsilon_i$</td>
<td>$\mathbb{E}(W_i)$</td>
</tr>
<tr>
<td>(0, 0, 1)</td>
<td>0.58</td>
<td>0.2066</td>
<td>11.17</td>
<td>1.03</td>
<td>10.58</td>
</tr>
<tr>
<td>(0, 1, 0)</td>
<td>5.33</td>
<td>0.0618</td>
<td>10.66</td>
<td>0.16</td>
<td>5.33</td>
</tr>
<tr>
<td>(0, 1, 1)</td>
<td>5.17</td>
<td>0.1215</td>
<td>20.33</td>
<td>0.93</td>
<td>15.17</td>
</tr>
<tr>
<td>(1, 0, 0)</td>
<td>3.19</td>
<td>0.0841</td>
<td>8.38</td>
<td>0.13</td>
<td>5.19</td>
</tr>
<tr>
<td>(1, 0, 1)</td>
<td>3.49</td>
<td>0.1691</td>
<td>18.99</td>
<td>1.10</td>
<td>15.49</td>
</tr>
<tr>
<td>(1, 1, 0)</td>
<td>8.51</td>
<td>0.0671</td>
<td>19.02</td>
<td>0.28</td>
<td>10.51</td>
</tr>
<tr>
<td>(1, 1, 1)</td>
<td>8.32</td>
<td>0.1157</td>
<td>28.65</td>
<td>1.06</td>
<td>20.32</td>
</tr>
</tbody>
</table>

Finally, we provide a comparison to the “fully homogeneous” plan in which the firm sets the same salary and commission for every agent. The restriction to pay every agent the same salary reduces the profits for the firm significantly compared to the partially homogenous case. Intuitively, in this case only the reservation utility for the lowest type binds, and the other two types will obtain surplus above their reservation levels. The inability to extract this surplus by fine tuning salaries hurts the principal. The expected profits drop to $1.99, a 76% decrease from the partially homogenous case (payoff of $8.51). Not surprisingly, this case is rarely seen in practice, and is not of first-order real-world significance. It is however interesting to note that profits under the partially homogenous plan ($8.51) come close to that of the fully heterogeneous plan ($9.1), in spite of the restriction to common commissions. This suggests that the ability to pick agents is valuable and may compensate for the reduced incentives implied by the commonality in contract terms.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Profits</th>
<th>Commission Rate</th>
<th>Sales</th>
<th>Effort</th>
<th>Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>$\mathbb{E}(\Pi_M)$</td>
<td>β</td>
<td>$\mathbb{E}(\sum S_i)$</td>
<td>$\sum \epsilon_i$</td>
<td>$\mathbb{E}(W_i)$</td>
</tr>
<tr>
<td>(1, 1, 1)</td>
<td>1.99</td>
<td>0.1165</td>
<td>28.67</td>
<td>1.06</td>
<td>26.69</td>
</tr>
</tbody>
</table>

The simple example shows how composition and compensation interact in influencing firm profits. While the example has only three agents, it provides a glimpse into the workings of this interaction, and in particular shows that commonly used performance measures such as sales (or even profit contribution) may not be useful in determining which
agents should stay. Indeed, in the above example, agent 3 had the highest productivity in terms of sales (11.17 vs. 10.66 and 8.38 for agents 1 and 2) and expended the highest stand-alone effort (1.03 vs .16 and .13 for agents 1 and 2). However, keeping the agent in the pool severely distorted the incentives to the others. We conjecture that similar patterns apply more generally in real world sales-forces. To examine this conjecture we use data from a real salesforce below. Before doing so, we introduce a new Boolean optimization scheme that allows us to obtain the optimal salesforce composition without complete enumeration.

4 Cross Entropy Approach

The simple example presented above used a complete enumeration of possible salesforce compositions to examine profitability. Real-world sales-forces often numbers in the hundreds or thousands, and this approach is not practical. Finding the optimal configuration of agents is a large-scale integer-programming problem. We experimented with several integer-programming algorithms and found significant success using a new optimization technique named “Cross-Entropy” that was first introduced by Rubenstein (1997) in the context of sampling rare events. The approach has been adapted to combinatorial optimization and pseudo-Boolean optimization (De Boer et al. 2005). Since application of cross-entropy is new in the context of salesforce settings, we provide a short overview below. Readers who are uninterested in the technical details of the optimization can skip this section to the next, which discusses the empirical application.

The idea of the cross-entropy approach is to choose a parametric density (say, a product of Bernoullis for our context) that generates candidate solutions. At each iteration a set of candidates are “scored” on the basis of their profitability and the top ρ-quartile subset of solutions is retained. This “elite” subset is then used to update the parametric proposal density. The algorithm then iterates until convergence. The properties of the algorithm and the rates of convergence are discussed in Margolin (2004) and Costa et al. (2005). Please see those papers for further details.

The Algorithm

1. Initialize p_0, R, T, ρ and $\{\alpha_t\}_{t=1}^\infty$

2. At each iteration t:

 (a) Generate a set of configurations $M_t^{(r)}$, $r = 1..R$ from $f(M|p_{t-1})$

 (b) Compute $\Pi^{(r)} = \mathbb{E}(\Pi(M_t^{(r)}))$ for all r and order $\Pi^{(1)} \leq \Pi^{(2)} \leq ... \leq \Pi^{(R)}$

 (c) Let $R^\rho = \lceil (1 - \rho) R \rceil$ and compute the $(1 - \rho)$-quantile of profits: $\hat{\gamma}_t = \Pi^{(N-N^\rho+1)}$

 (d) Let G_t denote the set of indices r such that $\Pi^{(r)} \geq \hat{\gamma}_t$, and let $R_G = |G_t|$
3. For each $i = 1..N$ calculate

$$\omega_{it} = \frac{1}{R_G} \sum_{r \in G_i} 1(M^{(r)}_{it} = 1)$$

4. Update

$$p_{it} = (1 - \alpha_t) p_{it-1} + \alpha_t \omega_{it}$$

5. If $t = T$, or if

$$\max_{1 \leq j \leq N} \{ \min \{ p_{jt}, 1 - p_{jt} \} \} \leq \varepsilon$$

for small ε, then stop, or else set $t = t + 1$ and return to step 2.

5 Application

Our data come from the direct selling arm of the sales-force division of a large contact lens manufacturer in the US (we cannot reveal the name of the manufacturer due to confidentiality reasons). These data were used in Misra and Nair (2001). Contact lenses are primarily sold via prescriptions to consumers from certified physicians. Importantly, industry observers and casual empiricism suggests that there is little or no seasonality in the underlying demand for the product. The manufacturer employs 87 sales-agents in the U.S. to advertise and sell its product directly to each physician (also referred to as a “client”), who is the source of demand origination. The data consist of records of direct orders made from each doctor’s office via a online ordering system, and have the advantage of tracking the timing and origin of sales precisely. Agents are assigned their own, non-overlapping, geographic territories, and are paid according to a nonlinear period-dependent compensation schedule. We note in passing that prices play an insignificant role for output since the salesperson has no control over the pricing decision and price levels remained fairly stable during the period for which we have data. The compensation schedule for the agents involves salaries, quotas and ceilings. Commissions are earned on any sales exceeding quota and below the ceiling. The salary is paid monthly, and the commission, if any, is paid out at the end of the quarter. The sales on which the output-based compensation is earned are reset every quarter. Additionally, the quota may be updated at end of every quarter depending on the agent’s performance (“ratcheting”). Our data includes the history of compensation profiles and payments for every sales-agent, and monthly sales at the client-level for each of these sales-agents for a period of about 3 years (38 months).

The firm in question has over 15,000 SKU-s (Stock Keeping Units) of the product. The product portfolio reflects the large diversity in patient profiles (e.g. age, incidence of astigmatism, nearsightedness, farsightedness etc.), patient needs (e.g. daily, disposable
etc.) and contact lens characteristics (e.g. hydrogel, silicone-hydrogel etc.). The product portfolio of the firm is also characterized by significant new product introduction and line extensions reflecting the large investments in R&D and testing in the industry. The role of the sales-agent is partly informative, by providing the doctor with updated information about new products available in the product-line, and by suggesting SKU-s that would best match the needs of the patient profiles currently faced by the doctor. The sales-agent also plays a persuasive role by showcasing the quality of the firm’s SKU-s relative to that of competitors. While agent’s frequency of visiting doctors is monitored by the firm, the extent to which he “sells” the product once inside the doctor’s office cannot be monitored or contracted upon. In addition, while visits can be tracked, whether a face-to-face interaction with a doctor occurs during a visit in within the agent’s control (e.g., an unmotivated agent may simply “punch in” with the receptionist, which counts as a visit, but is low on effort).\footnote{The firm does not believe that sales-visits are the right measure of effort. Even though sales-calls are observed, the firm specifies compensation based on sales, not calls.}

Misra and Nair (2011) used these data to estimate the underlying parameters of the agent’s preferences and environments using a structural dynamic model of forward-looking agents. For our simulations, we use some parameters from that paper, while some are re-estimated. We provide a short overview of the model and estimation below, noting differences from their analysis in passing.

5.1 The Model for Sales-Agents

The compensation scheme involves a salary, α_t, paid in month t, as well as a commission on sales, β_t. The sales on which the commission is accrued is reset every N months. The commission β_t is earned when total sales over the sales-cycle, Q_t, exceeds a quota, a_t, and falls below a ceiling b_t. No commissions are earned beyond b_t. Let I_t denote the months since the beginning of the sales-cycle, and let q_t denote the agent’s sales in month t. Further, let χ_t be an indicator for whether the agent stays with the firm. $\chi_t = 0$ indicates the agent has left the focal company and is pursuing his outside option. Assume that once the agent leaves the firm, he cannot be hired back (i.e. $\chi_t = 0$ is an absorbing state). The total sales, Q_t, the current quota, a_t, the months since the beginning of the cycle I_t, and his employment status χ_t are the state variables for the agent’s problem. We collect these in a vector $s_t = \{Q_t, a_t, I_t, \chi_t\}$, and collect the observed parameters of his compensation scheme in a vector $\Psi = \{\alpha, \beta\}$.

The index i for agent is suppressed in what follows below. At the beginning of each period, the agent observes his state, and chooses to exert effort e_t. Based on his effort, sales q_t are realized at the end of the period. Sales q_t is assumed to be a stochastic, increasing function of effort, e and a demand shock, ϵ_t, $q_t = q(\epsilon_t, e)$. The agent’s utility is derived from his compensation, which is determined by the incentive scheme. We write the agent’s
monthly wealth from the firm as, $W_t = W(s_t, e_t, \varepsilon_t; \mu, \Psi)$ and the cost function as $\frac{d e_t^2}{2}$, where d is to be estimated. We assume that agents are risk-averse, and that conditional on $\chi_t = 1$, their per-period utility function is,

$$u_t = u(Q_t, a_t, I_t, \chi_t = 1) = \mathbb{E}[W_t] - r \times \text{var}[W_t] - \frac{d e_t^2}{2}$$ \hspace{1cm} (21)

Here, r is a parameter indexing the agent’s risk aversion, and the expectation and variance of wealth is taken with respect to the demand shocks, ε_t. The payoff from leaving the focal firm and pursuing the outside option is normalized to U^0,

$$u_t = u(Q_t, a_t, I_t, \chi_t = 0) = U^0$$ \hspace{1cm} (22)

In this model, sales are assumed to be generated as a function of the agent’s effort, which is chosen by the agent maximizing his present discounted payoffs subject to the transition of the state variables. The first state variable, total sales, is augmented by the realized sales each month, except at the end of the quarter, when the agent begins with a fresh sales schedule, i.e.,

$$Q_{t+1} = \begin{cases} Q_t + q_t & \text{if } I_t < N \\ 0 & \text{if } I_t = N \end{cases}$$ \hspace{1cm} (23)

For the second state variable, quota, we estimate a semi-parametric transition function that relates the updated quota to the current quota and the performance of the agent relative to that quota in the current quarter,

$$a_{t+1} = \begin{cases} a_t & \text{if } I_t < N \\ \sum_{k=1}^{K} \theta_k \Gamma(a_t, Q_t + q_t) + v_{t+1} & \text{if } I_t = N \end{cases}$$ \hspace{1cm} (24)

In above, the new quota is allowed to depend flexibly on a_t and $Q_t + q_t$, via a K order polynomial basis indexed by parameters, θ_k to capture in a reduced-form way, the manager’s policy for updating agent’s quotas. The term v_{t+1} is an i.i.d. random variate which is unobserved by the agent in month t. The distribution of v_{t+1} is denoted $G_v(.)$, and will be estimated from the data. Finally, the transition of the third state variable, months since the beginning of the quarter, is deterministic,

$$I_{t+1} = \begin{cases} I_t + 1 & \text{if } I_t < N \\ 1 & \text{if } I_t = N \end{cases}$$ \hspace{1cm} (25)

Finally, the agent’s employment status in $(t + 1)$, depends on whether he decides to leave the firm in period t. Given the above state-transitions, we can write the agent’s problem as choosing effort to maximize the present-discounted value of utility each period, where
future utilities are discounted by the factor, ρ. We collect all the parameters describing the agent’s preferences and transitions in a vector $\Omega = \{\mu, d, r, G_{e}(.), G_{v}(.), \theta_{k,k=1,...,K}\}$. In month $I_{t} < N$, the agent’s present-discounted utility under the optimal effort policy can be represented by a value function that satisfies the following Bellman equation (see Misra and Nair 2011),

$$V(Q_{t}, a_{t}, I_{t}, \chi_{t}; \Omega, \Psi) = \max_{\chi_{t+1} \in (0,1), e > 0} \left\{ u(Q_{t}, a_{t}, I_{t}, \chi_{t}, e; \Omega, \Psi) + \rho \int_{e} V(Q_{t+1} = Q(Q_{t}, q(\varepsilon_{t}, e)), a_{t+1} = a_{t}, I_{t+1}, \chi_{t+1}; \Omega, \Psi) f(\varepsilon_{t}) d\varepsilon \right\}$$

(Similarly, the Bellman equation determining effort in the last period of the sales-cycle is,

$$V(Q_{t}, a_{t}, N, \chi_{t}; \Omega, \Psi) = \max_{\chi_{t+1} \in (0,1), e > 0} \left\{ u(Q_{t}, a_{t}, N, \chi_{t}, e; \Omega, \Psi) + \rho \int_{e} \int_{v} V(Q_{t+1} = 0, a_{t+1} = a(Q_{t}, q(\varepsilon_{t}, e), a_{t}, v_{t+1}), 1, \chi_{t+1}; \Omega, \Psi) \times f(\varepsilon_{t}) \phi(v_{t+1}) d\varepsilon_{t} dv_{t+1} \right\}$$

(27)

Conditional on staying with the firm, the optimal effort in period t, $e_{t} = e(s_{t}; \Omega, \Psi)$ maximizes the value function,

$$e(s_{t}; \Omega, \Psi) = \arg\max_{e > 0} \{ V(s_{t}; \Omega, \Psi) \}$$

(28)

The agent stays with the firm if the value from employment is positive, i.e.,

$$\chi_{t+1} = 1 \text{ if } \max_{e > 0} \{ V(s_{t}; \Omega, \Psi) \} \geq 0$$

This completes the specification of the model specifying the agent’s behavior under the plan that generated the data.

Given this set-up, the structural parameters describing an agent Ω, can be estimated in two steps.

Estimation Plan

First, we recognize that once effort, \hat{e}_{t} is estimated, we can treat hidden actions as known. The theory implies s_{t} is the state vector for the agent’s optimal dynamic effort choice. We can use the theory, combined with dynamic programming to solve for the optimal policy function $e^{*}(s_{t}; \Omega)$, given a guess of the parameters Ω. Because \hat{e}_{t} is known, we can then
use $\hat{e}_t = e^*(s_t; \Omega)$ as a second-stage estimating equation to recover Ω. Misra and Nair (2011) implement this approach agent-by-agent to recover Ω for each agent separately. They exploit panel-data available at the client-level for each agent to avoid imposing any cross-agent restrictions, thereby obtaining a semi-parametric distribution of the types in the firm.

The question remains how the effort policy, $\hat{e}_t = \hat{e}(s_t)$ can be obtained? The intuition used in Misra and Nair is to exploit the nonlinearity of the contract combined with panel data for identification. The nonlinearity implies the history of output within a compensation horizon is relevant for the current effort decision, because it affects the shadow cost of working today. Thus, effort is time varying, and dynamically adjusted. The relationship between current output and history is observed in the data. This relationship will pin down hidden effort. Intuitively, the path of output within the compensation cycle is informative of effort. We will exploit the same intuition here for estimation.

For the counterfactuals in this paper, we need estimates of $\{h, k, d, r, U_0^0, G_\varepsilon(\cdot)\}$. Here, we assume that $G_\varepsilon(\cdot) \sim N(0, \sigma^2)$. So, we need to estimate $\{h, k, d, r, U_0^0, \sigma\}$. Misra and Nair report on a new plan implemented at the firm. The data from this plan are not utilized in estimation of parameters in that paper. Our approach here will be to condition on the estimates of the policy-invariant parameters $\{d, r, U_0^0\}$ from Misra and Nair (2011), and to recover estimates of $\{h, k, \sigma\}$ using data from the new plan implemented at the firm.\(^7\) This new plan is well approximated by a salary + linear commission (we cannot divulge exact details due to binding confidentiality restrictions), and hence is closer to the situation considered here.

Estimation Details

For each agent in the data, we observe sales at each of J clients, for a period of T months under the new plan. In our empirical application T is 12, and J is of the order of 60-300 for each agent. The client data adds cross-sectional variation to agent-level sales which aids estimation. To reflect this aspect of the data, we add the subscript j for client from this point onward.

$$q_{ijt} = h_{ij} + k_{ijt}e_{it} + \varepsilon_{ijt}$$

Here, k_{ijt} represents the number of calls made by agent i to client j in month t, and is observed. Call information is useful for pinning down sales-effort (e.g., John and Weitz 1989; Coughlan and Narasimhan 1992). The call data is not exploited in Misra and Nair (2011) and allow us to identify effort as a slope coefficient in the sales equation. The

\(^7\)We use the same estimates for the policy-invariant parameters $\{d, r\}$ from Misra and Nair (2011). We approximate U_0^0 as the per-period utility corresponding to the minimum (across states) of the agent’s value function in Equation (28). The idea is that the value function at each state measures the agent’s present-discounted payoff from working with the firm. Our best guess of U_0^0 is that it is should at least be as high as the agent would make if he decides to continue with the firm in the worst state that could be realized when employed.
role played by the incentive plan is thus to influence the agent and time variation in the coefficient on calls, which is accommodated semiparametrically in the above specification. We interpret \(h_{ij} \) as the agent’s time-invariant intrinsic “ability” to sell to client \(j \). We parametrize \(h_{ij} \) as a function of client characteristics \(z_{ij} \), letting \(h_{ij} = \nu_i + \mu_i'z_{ij}, \) and,

\[
q_{jt} = \nu_i + \mu_i'z_{ij} + k_{ijt}\sigma_{it} + \varepsilon_{ijt}
\]

We can then obtain the demand parameters by straightforward regression methods. Note that, for the purposes of our optimization exercise we need to map these estimates to sales agent-specific constructs. These are obtained by aggregating across time and/or clients as appropriate. So, \(h_i = \sum_j h_{ij}, \) \(k_i \approx \frac{1}{T} \sum_t \sum_j k_{ijt}, \) while \(\sigma \) is obtained from the aggregated variance of the residuals. We now present these estimates and discuss the results of our analysis.

6 Results

We first discuss the results from the estimation of the agent type parameters. These are reported below. We use a set of 58 agents in our analysis who are all located in one division of the firm’s overall salesforce. Since we are using data from the new plan, the numbers we report have been scaled to preserve confidentiality; however, the scaling is applied uniformly and are comparable across agents. For purposes of intuition the reader should consider \(h \) and \(U^0 \) to be in millions of dollars. So roughly speaking, the median outside option in the data is about $86,400 while the average agent’s sales in the absence of effort would be close to a million dollars.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Statistic</th>
<th>(h)</th>
<th>(k)</th>
<th>(r)</th>
<th>(d)</th>
<th>(\sigma)</th>
<th>(U^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.9618</td>
<td>1.0591</td>
<td>0.0466</td>
<td>0.0436</td>
<td>0.4081</td>
<td>0.0811</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>0.9962</td>
<td>1.0802</td>
<td>0.0314</td>
<td>0.0489</td>
<td>0.3114</td>
<td>0.0864</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.5763</td>
<td>0.2642</td>
<td>0.0014</td>
<td>0.0049</td>
<td>0.0624</td>
<td>0.0710</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>1.4510</td>
<td>1.8110</td>
<td>0.3328</td>
<td>0.1011</td>
<td>1.5860</td>
<td>0.1032</td>
<td></td>
</tr>
</tbody>
</table>

We condition on these parameters and solve for the optimal composition and compensation for the firm using the cross-entropy approach described previously. We discuss these below, simulating two different scenarios. First, we simulate the fully heterogeneous plan where each agent receives a compensation plan (salary + commission) tailored specifically for him or her. We also simulate the partially homogenous contract where the commission rate is common across agents but the salaries may vary across individuals. We organize our discussion by presenting details of the optimal composition chosen by the firm under
these plans, and then present details of effort, sales and profits.

6.1 Composition

We start with the fully heterogeneous plan as a benchmark. We find all agents have positive profit contributions when plans can be fully tailored to their types. Consequently, the optimal configuration under the fully heterogeneous plan is to retain all agents (the “status quo”). This is not surprising as noted in our 3-agent simulation previously.

Simulating the partially heterogeneous compensation plans, we find the optimal composition in this salesforce would involve letting go of six salespeople. It is interesting to investigate the characteristics of the agents who are dropped and to relate it to that of the agent pool as a whole. In Figure (1) we plot the joint distribution of the primitive agent types \{h, k, d, r, U^0, \sigma\} for all agents at the firm. Each point in the various two-way plots is an agent, and each two-way shows a scatter-plot of a particular pair of agents types, across the agent pool. For instance, plot [4,1] in Figure (1) shows a scatter-plot of risk aversion \((r)\) versus the cost of effort \((d)\) across all agents in the pool. Plot [1,4] is symmetric and shows a scatter-plot of cost of effort \((d)\) versus risk aversion \((r)\). The six agents who are dropped in the optimal composition are represented by non-solid symbols, highlighted in red. For instance, we see that one of the dropped agents, represented as an “o”, has a high risk aversion (1st row), an average level of sales-territory variance (2nd row), an average level of productivity (3rd row), a low cost of effort (4th row), a low outside option (5th row), and a lower than average base level of sales (last row). Even though this agent has a low cost of effort, his high risk aversion, low outside option, as well as the distribution of these characteristics across the rest of the agents, implies he is optimally dropped from the firm under the preferred composition. Figure (1) illustrates the importance of multidimensional heterogeneity in the composition-compensation tradeoff facing the principal, and emphasizes the importance of allowing for rich heterogeneity in empirical incentive settings.

In Figure 2, we plot the location of these salespeople on the empirical marginal densities of the profitability and sales across sales-agents. What is clear from Figure 2 is that there is no a priori predictable pattern in the location of these agents. In some cases, the agents lie at the tail end of the densities, though this does not hold generally. Further, the eliminated agents not uniformly at the bottom of the heap in terms of expected sales or profit contribution under the fully heterogeneous plan. For example, Agent #33, one of the agents who were dropped, had expected sales of $1.70MM under the fully heterogeneous plan which would place him/her in the top decile of agents in terms of sales. In addition, he/she is also in the top decile across agents in terms of profitability. However, in his/her case the variance of sales was the highest in the firm, and this creates a large distortion in the contract via the effect it induced on the optimal commission rate \((\beta)\). Eliminating this agent allows the firm to improve the contract terms of other agents thereby increasing
Figure 1: Joint Distribution of Characteristics of Agents who are Retained and Dropped from Firm under Partially Homogenous Plans
profits.8 Other agents were similarly eliminated on account of some other externality that impacted the compensation contract.

Figure 1 and 2 accentuates the difficulties of ranking agents as desirable or not on the basis of a single type-based metric. In a subsequent section below, we discuss a theory-based metric that makes sense for assessing agents in such a setting.

6.2 Compensation

We now discuss the optimal compensation implied for the firm under the optimal composition. We compare the fully heterogeneous plan to the partially homogenous plans with and without optimizing composition. Figure (3) plots the density of optimal commission rates under the fully heterogeneous plan along with those for the partially homogenous plans. The solid vertical lines are drawn at the common commission rate for the homogenous plans, with the blue vertical line corresponding to optimizing composition and the black corresponding to not optimizing composition. Looking at Figure (3), we see that the commission rates vary significantly across the sales-agents under the fully heterogeneous plans, going as high as 25\% for some agents (median commission of about 12\%). Under

8More generally, our point is not that this agent should necessarily be fired as a matter of policy, but that in the absence of firing this agent, the firm should find another way outside of salary + commission to incentivize the agent.
the partially homogenous plans, the optimal commission rates are lower. Interestingly, the ability to fine tune composition has significant bite in this setting. In particular, when constrained to not fine tune the salesforce, the firm sets an optimal common commission of about 4.8%. When it can also fine tune the salesforce, the firm optimally sets a higher commission rate of about 9%. When the firm is constrained by the compensation structure, the extreme agents (eliminated in the optimal composition) exert an externality that brings the overall commission rate down. By eliminating the “bad” agents, the firm is able to increase incentives. To what extent does this improve effort, sales and profitability? We discuss this next.

6.3 Effort and Outcomes

The profits for the firm under the fully heterogeneous plan are estimated to be around $60.56MM. We decompose profits with and without homogenous plans, with and without optimizing composition. As noted above, in our data all agents have positive profit contributions and consequently, the optimal configuration is identical to the status quo for compensation plans that are fully heterogeneous. Consequently profits for the fully
heterogeneous plan under the optimal configuration and the status quo are identical. This is depicted in the first row of the table below.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Compensation ↓</th>
<th>Status Quo</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Heterogeneous</td>
<td>$60.56MM</td>
<td>$60.56MM</td>
<td></td>
</tr>
<tr>
<td>Partially Homogenous</td>
<td>$55.78MM</td>
<td>$59.14MM</td>
<td></td>
</tr>
</tbody>
</table>

In contrast to the fully heterogeneous compensation structure, there is a significant difference in profit levels when compensation plans cannot be customized. Looking at the above table, partially homogenous plans with the ability to fine-tune composition come very close to the fully-heterogeneous plan in terms of profitability ($59.14MM compared to $60.56MM). But partially homogenous plans without the ability to fine-tune the salesforce causes a distortion in incentives, and result in a profit shortfall of $3.36MM, bringing the total profits down to $55.78MM.

To decompose the source of profitability differences across the different scenarios, in Figures 4a and 4b we depict the empirical CDF of effort and sales under the three scenarios. The “status-quo” plan is the one that keeps the same composition as currently, but changes compensation. Both the sales and effort distributions under the fully heterogeneous plan fall to the right of the partially heterogeneous plans. However, Kolmogorv-Smirnoff tests show that the distribution of sales and effort under the composition and compensation optimized scenario is not statistically different from that under the fully heterogeneous plan. This is striking, since it suggests that by simply altering composition in conjunction with compensation a firm can reap large dividends in motivating effort, even under the constraints of partial homogeneity in contractual terms. This is also why the overall profits under the optimal composition with common commissions is so close to that under heterogeneous plans.

We now assess the extent to which profits at the individual sales-agent level under the partially homogenous plan combined with the ability to choose the composition of agents, approximates the profitability under the fully heterogeneous plan (the baseline or best-case scenario). In Figure 5, we plot the profitability (revenues− payout) of each agent under the fully heterogeneous plan on the x-axis, and the profitability under the partially homogenous plan with and without the ability to optimize composition on the y-axis. Solid dots represent profits when optimizing composition, while empty dots represent profits holding composition fixed at the status quo. Each point represents an agent. Numbers are in $MM-s. Looking at Figure 5, we see the ability to choose composition is important. In particular, the profitability at the agent-level when constrained to partially homogenous contracts and not optimizing composition lies much below the profitability under a situation where contracts can be fully tailored to each agent’s type. But, the ability to choose agents seems to be able to mitigate the loss in incentives implied by the constraint
Figure 4: Empirical CDF of Implied Effort and Sales Under Different Counterfactual Compensation and Composition Profiles

(a) Empirical CDF of Effort Profiles

(b) Empirical CDF of Expected Sales
to homogeneity. The profitability under the composition-optimized, partially homogenous contracts come very close to that under fully tailored contracts.

We think this is an important take away. In the real-world, firms can choose both agents and incentives, and not incentives alone. Firms do face constraints when setting incentives. But, our results suggest that the profit losses associated with these constraints are lower when firms are also able to choose the type-space of the agents concomitant with incentives.

The question remains what is the mechanism that enables the firm come close to the fully heterogeneous plan when it optimizes the composition of its agents? The intuition is straightforward. When constrained to set a homogenous plan, a firm can do much better if the agents it has to incentivize are more homogenous. Hence, when given the option to choose both agents and plans, it finds a subset of relatively homogenous agents who can be incentivized close to optimally. Thus heterogeneity reduction is the mechanism that generates the improved profitability. To understand the implication of heterogeneity, note that optimal contracting requires the principal to satisfy both incentive rationality and incentive compatibility constraints for its chosen agents. Allowing for agent-specific salaries allows the firm the satisfy incentive rationality for the agents it wants to retain. But the constraint to a common commission implies that incentive compatibility becomes harder to satisfy when the agent pool becomes more heterogeneous. Hence, a firm that can also choose the pool prefers one that is relatively more homogenous, *ceteris paribus*.

To empirically assess this intuition, we compute a measure of the spread in the type distribution of the salesforce under the optimal partially homogenous contacts with and without the ability to choose agents. Assessing the dispersion in types is complicated by the fact that the type-space is multidimensional. We can separately compute the variance-covariance matrix of types in the salesforce under the two scenarios. To compute a single metric that summarizes the distribution of types, we define a measure of spread d_M as the trace of the variance covariance matrix of agent characteristics.\(^9\) That is,

$$d_M = \text{tr} (\Sigma_M)$$

We find that $d_{M_{\text{StatusQuo}}} = 78,891.6$, and $d_{M_{\text{Optimal}}} = 51,921.8$, where $d_{M_{\text{StatusQuo}}}$ is the spread under the optimally chosen partially homogenous plan while retaining all agents in the firm, and $d_{M_{\text{Optimal}}}$ is the spread under an optimally chosen partially homogenous plan while also optimizing the set of agents retained in the firm. We see that the optimal configuration involves about 34.2% reduction in heterogeneity. In the optimal strategy, the firm chooses agents such that the residual pool is more homogeneous. While this is intuitive, what is surprising is that its profits under this restricted situation come so close to what it would make under fully heterogeneous plans. This can only be assessed empirically.

\(^9\)The trace of a matrix is the sum of its diagonals.
In an important paper, Raju and Srinivasan (1996) make an analogous point, that allowing for heterogeneous quotas in a common commissions setting can closely approximate the optimal salary + commission based incentive scheme for a heterogeneous salesforce when those quotas can themselves reflect agent specific differences. Our point is analogous, that a firm constrained to a homogenous slope on its incentive contract can come very close to the optimum by picking the region of agent-types that it wants to retain. However, the mechanism we suggest is different. Raju and Srinivasan (1996) suggest addressing the problem of providing incentives to a heterogeneous salesforce by allowing for additional heterogeneity in contract terms. We suggest addressing the problem of setting incentives to a heterogeneous pool of agents by making the salesforce more homogenous. In another important contribution, Lal and Staelin (1986) and Rao (1990) show that a firm facing a heterogeneous salesforce can tailor incentives to the distribution of types it faces by offering a menu of salesforce plans. Their approach uses agents' self-selection into plans as the mechanism for managing heterogeneity, and requires the firm to offer a menu of contracts taking the salesforce composition as given. In our model, the firm offers only one contract to an agent, but chooses which agent to make attractive contracts to (thus, the margin of choice for agents in our model is not over contracts but over whether to stay in the firm or leave). Our model endogenizes the salesforce's composition and may be seen as applying to contexts where offering a menu of plans to employees to choose from is not feasible, or desired. We think the three perspectives outlined above for the practical management of heterogeneity in real-world settings are complementary to each other.

6.4 The Value of an Agent

We now use the model above for a salesforce assessment exercise. Our goal is to compute a metric that encapsulates the value of each agent to the firm. In addition to incremental contribution, our metric incorporates the contractual externality imposed by an agent implied by the restriction to uniform commissions. The main insight behind our metric is that the value of the agent is not simply the present-discounted value of the sales minus payouts to the agent. Rather, the value of the agent has to be assessed relative to a counterfactual world, in which the firm re-optimizes both the composition and the compensation of the agent pool that remains with the firm once that agent departs. Essentially, the loss of an agent changes the distribution of types within the firm. The change in the type distribution necessitates a change to the way the remaining agents are incentivized, which requires re-adjusting both the contract structure and the salesforce structure under the new situation. A full assessment of the value of an agent will take this counterfactual into account.

We compute this metric as follows. Starting with the first agent in the pool, we compute what would be the profits to the firm if that agent were surely retained in the salesforce, but the firm were to optimize both compensation and composition to the entire salesforce
Figure 5: Profitability at the Individual Sales-agent Level under Fully Heterogeneous Plan and Partially Homogenous Plan with and without Optimized Composition.
under the restriction that the agent always stays. We store these numbers in memory. We then drop agents sequentially from the firm. When each agent is dropped, we use our model and estimates to compute what would be the profits to the firm under the optimal composition and composition of the remaining agent pool without the focal agent. We compute our metric of an agent’s value as the total profit to the firm with the agent in the firm minus the total profit to the firm without the agent, wherein, in both scenarios, we allow the firm to re-optimize the salesforce and its incentives as described above. We repeat this exercise for each agent in the firm, simulating the profit differences for each. Each simulation is a separate counterfactual pair. Formally, define $\Pi(M_N)$ as the profit to the principal when choosing composition M and compensation W optimally,

$$
\Pi(M_N) = \max_{M \in M_N, W \in W_M} \int \sum_{i \in M} [S_i - W(S_i)] dF(S_i|e_i)
$$

Let the set of agent-configurations in which agent i is included be denoted $M_N^{(i)}$, and those in which he is not be denoted $M_N^{(-i)}$. Then, our value metric is defined as,

$$
V_i = \Pi(M_N^{(i)}) - \Pi(M_N^{(-i)})
$$

This value metric has the advantage that it retains a link to the theory and that it summarizes the effect of the multivariate nature of each agent’s type on his attractiveness to the firm.

Figure (6) plots the value metric computed across agents (y-axis). For ease of comparison to contribution-based metrics, we also plot each agent’s profitability under the fully heterogeneous plan on the x-axis. The agents who are dropped under the optimal composition are denoted by “x”-s (one agent is very undesirable and has a large negative value metric; he is not included in the plot for pictorial clarity). Figure (6) documents the wide heterogeneity in the salesforce: some agents are very valuable to the firm compared to the average. Further, there are several whose computed value is negative. Not surprisingly, these are the ones who are dropped from the firm in the optimal configuration.\(^{10}\) While agents with negative value are identified by the metric, a useful by-product is that it also identifies a set of agents who are close to the zero cutoff. To the extent that there is statistical noise in the metric, this pin-points a set of agents the firm should monitor closely or place “on probation”. In this sense, the value metric is a useful statistic that complements the human resource management of the sales and marketing function.

Another take away from Figure (6) is that profitability is a useful, but not fully diag-

\(^{10}\)It is not necessary (but is likely to be the case typically) that an agent with a negative value is always dropped from the firm in the optimal configuration - it happens to be the case in this example. The intuition as discussed further in this section is that the firm’s decision to drop other agents simultaneously affects a focal agent’s valuation.
Figure 6: Value Metric Plotted Against Agent’s Profitability Under the Fully Heterogeneous Plan
nosi metric for assessing the quality of agents. For instance, there are several agents close to the median level of profitability under the fully heterogeneous plan who are nevertheless in the band for probation or are altogether dropped from the firm. These agents are picked out for management’s attention by our metric. The pictures look similar if we plot the value metric against expected sales under the fully heterogeneous plan (instead of profits), or against alternative data-based measures like summaries of observed past sales/profits on the x-axis.

Finally, Figure (6) assesses the effect on total profits when an agent is dropped from the pool, compared to when he’s retained. The advantage of our approach is that we can also simulate out the effect on every other agent when a given agent is dropped. To illustrate, we plot the density across agents of the difference in profitability when a focal agent is dropped from the firm versus when he’s retained. We see that agent 12 (who is dropped from the firm in the optimal configuration) induces a negative externality on a large proportion of the agent pool: the profitability of most other agents rise when #12 is dropped. Figure (7) also plots how the profitability of agents change when another agent (#21), who is retained in the firm under the optimal configuration, is instead dropped from the firm. Dropping #21 does improve the profitability of some agents, but the net effect for the firm is positive, and he is thus retained. The advantage of our structural approach is that it facilitates such detailed assessments by retaining a link to theory.

Discussion We close the paper with a discussion of some additional implications of the above approach to value. The logic behind the value metric reveals a sense in which firing and retaining sales-agents involve economies of scope. In particular, the value of an agent A when contemplating firing only agent A, is different from the value of A when
contemplating firing both agents A and B simultaneously. The joint departure of A and B together from the firm would imply a different profit outcome for the firm via changed incentives and composition. In essence, both these are two different counterfactuals and therefore imply two different valuations. This generate several interesting implications. As a practical example, this implies for instance, that the value of an agent is different when the firm is thinking of letting him go as part of bad performance (a one-off firing event) versus as part of a company-wide layoff or downsizing (when many agents will be let go simultaneously). Another immediate implication is that the value of a group of agents can be very different than the sum of their values. Thus, it may be that a set of agents may not look very attractive in isolation, but may be very attractive jointly. This may drive the firm to do “coordinated hiring.” The reverse may also be true: a set of agents may be attractive individually, but may be unattractive jointly, nudging the firm towards a coordinated firing policy.

Finally, there is a sense in which the model predicts a “run” in firing, wherein firing one agent leads to one or more agents to also be fired. To see this, note than its possible that firing agent A induces the firm to re-optimize its composition, and in that re-optimized composition, agent B is let go, even though agent B would not be fired from the firm if A has stayed with the company. In this sense, A imposes another kind of externality on other salespeople. If A leaves the company due to a random shock (A’s family moves elsewhere), it may be that it then becomes optimal for the firm to fire B!

This also exposes a hidden danger (or advantage, as the case may be) of uniform contracts. In the example above, if B anticipates that A’s departure would harm him via the changed compensation and composition implied by his departure, it may be optimal for B to offer a trade to A to induce him to stay. This may lead to “trading favors” or pro-social behavior that may help the firm and improve “culture”. On the other hand, one can imagine a situation where B anticipates that A’s departure is beneficial to him (via increased commissions or a more preferred remnant sales-pool). In this case, B has an incentive to take actions to get A fired. In this example, uniformity results in harmful incentives that may hurt the firm and debilitate internal “culture”.

More broadly then, our high-level point is that valuation of sales-agents attains meaning only relative to a counterfactual. Unless the counterfactual is clearly stated, the valuation exercise is imprecise. Our model and approach facilitates these counterfactuals when stated. Moreover, our discussion above shows that more research is needed to better understand the causes and consequences of uniform incentives within firms.

7 Conclusion

We consider a situation where a firm that is constrained to set partially homogenous contracts across its agent pool can optimize both its composition and its compensation policy. We find that the ability to optimize composition partially offsets the loss in incentives from
the restriction to uniform contractual terms. Homogeneity also implies a particular type of contractual externality within the company. The presence of an agent in the firm indirectly affects the welfare and outcomes of another through the effect he induces on the common element of contracts. This externality exists even in the absence of complementarity in output across agents, team production, common territories or relative incentive terms. We present a metric that can value agents in the firm incorporating this effect. Simulations and an application to a real-world salesforce suggest that the ability to choose composition has empirical bite in terms of payoffs, sales-effort and sales.

More generally, the ability to choose agents and the restriction to partially homogenous contracts is pervasive in real-world business settings. However, principal-agent theory is surprisingly silent on both endogenizing the composition of agents, and exploring the consequences of uniformity. We hope our first-cut on the topic will inspire richer theory and empirical work on the mechanisms causing firms to choose similar contracts across agents, and on the consequences of these choices. Finally, if firms are indeed jointly optimizing both composition and compensation, the variation in both contracts and employee hires and retention is endogenous in cross-sectional and longitudinal datasets on salesforces. More research is required to understand how to solve the difficult econometric endogeneity concerns that then arise in using this variation for inference of incentive effects (Joseph and Kalwani 1992; Ackerberg and Botticini 2002; Lo et al. 2011).
8 References

